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a b s t r a c t

This article addresses the formation control problem with mismatched compasses. Depending on the
sensing and communication technology, compass mismatches may arise due to biases in measurement,
drift in inertial sensing despite initial alignment, and even spatial variations in the earth’s magnetic field.
To illustrate the key concepts underlying what happens, we first consider the two agent case and show
that the agents converge to a fixed, but distorted formation exponentially fast. In contrast to the matched
compass case, the formation is not asymptotically stationary. The distance error and the angular error
between the actual final formation and the desired formation are explicitly given, as is the steady state
velocity of the formation. The case of time-varying mismatched compasses is also studied. Based on
the results, we then propose estimators to obtain the mismatched angle, which allow a compensation
algorithm to be proposed such that the desired formation shape is achieved. Finally, the extensions to the
n agent case are also considered and similar phenomena are encountered. Simulations are provided to
validate the theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The formation control problem for multi-agent systems has
received increasing attention during the last decade due to its
broad applications in spacecraft formation flying, search and
rescue, and formation control of mobile robots (Cortes, Martinez,
& Bullo, 2006; He, Qian, Lam, Chen, Han & Kurths, 2015; Meng,
Anderson, & Hirche, 2015; Sieber, Deroo, & Hirche, 2013; Yang,
Roy, Wan, & Saberi, 2011; Zavlanos & Pappas, 2008). There are
many variations on the formation control problem, including
problems with a leader or without a leader (Ren, 2007; Shi &
Hong, 2009), problems with underlying graph structure which
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is directed or undirected (Hatano & Mesbahi, 2005; Moreau,
2005), problems in which the formation is achieved with velocity
consensus leading to a moving final formation or solutions where
the final formation is stationary (Jiang, Deghat, & Anderson,
2013; Lin, Broucke, & Francis, 2004). One particular distinction
is between securing a formation with both a prescribed shape
and a prescribed orientation, as opposed to simply aiming for
a prescribed shape. Seeking a prescribed shape with prescribed
orientation is in fact one of the easier problems. It can be solved
using a linear consensus-based algorithm, where the control input
is a combination of the neighbor-based relative position term and
a nonzero bias term representing the formation objective (Fax &
Murray, 2004; Olfati-Saber, Fax, &Murray, 2007). This is contrasted
with an approach for shape control without orientationwhich uses
gradient-based control, grounded in the theory of graph rigidity
and often derived from system structural potentials (Cao, Morse,
Yu, Anderson, & Dasgupta, 2011; Krick, Broucke, & Francis, 2009).
In the gradient-based approach, agents do need again to measure
relative positions, but only in a local coordinate basis associated
with the measuring agent, which does not have to be directionally
aligned with the coordinate bases of other agents. In contrast, the
consensus-based approach requires all agents to have knowledge
of where the common/global north is. Equivalently, coordinate
bases of the different agents have to be directionally aligned. In
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this article, the consensus-based approach is considered. For this
approach, common knowledge of where north is may sometimes
be expressed by saying that all agents require a compass. In
practice, they may acquire knowledge of north from inertial
navigation properly initialized, or landmark data, the use of which
likely requires inter-agent transmissions.

It is evident that it will often be physically unrealistic to claim
that all agents have common error-free knowledge of where north
is: biases can exist in instruments; drift can occur in inertial
navigation systems; spatial variation can occur in the earth’s
magnetic field. This article explores the consequence of postulating
the existence of errors in the direction of north, i.e. agents have
differing views of where north is. To exhibit the key ideas, which
apply to formations of any size, it is convenient to consider first
a very simple case. Hence we start from the matched compass
formation control for two agents in a two-dimensional plane,

Ȧ1 = (A2 − A1) − D, (1a)

Ȧ2 = (A1 − A2) + D, (1b)

where A1 = [x1, y1]T ∈ R2, A2 = [x2, y2]T ∈ R2 are the positions
of agents 1 and 2, and D = [dx, dy]T ∈ R2 is a given desired
relative position and known for each agent. The objective is to drive
agents 1 and 2 to form a stationary formation in the plane such that
A2 = A1 +D. It is straightforward to show that d

dt (A2 −A1 −D) =

−2(A2 − A1 − D). This implies that limt→∞(A2(t) − A1(t)) =

D, limt→∞ Ȧ1(t) = 0, and limt→∞ Ȧ2(t) = 0 exponentially
fast. Therefore, agents converge to the desired formation and the
velocities converge to zero exponentially fast.

In considering the above simple algorithm one should notice
that the algorithm is constructed based on the assumption that the
relative position measurement A2 −A1 for agent 1 and the relative
position measurement A1 − A2 for agent 2 are identical (up to the
sign). However, in real systems this assumption is unlikely to be
satisfied for reasons as noted above. As already indicated, it is the
directional error, i.e., a compass mismatch, that will concern us.
For convenience but without any loss of generality, suppose that
the global coordinates coincide with the coordinate basis of agent
1. We next seek to express the equation of motion of agent 2 in
global coordinates. Suppose Ai denotes the position of agent i, i =

1, 2 in global coordinates and 2Ai denotes its position in agent 2’s
coordinates. Suppose agent 2’s viewof north is that it isφ radians in
a clockwise direction from agent 1’s view, where φ ∈ (−π, π]. An
illustration is given in Fig. 1. We then know that a vector defining
a line segment in global coordinates, denoted by 1W = [x, y]T is
described in agent 2’s coordinate basis as 2W = R(−φ)1W, where
R−1(φ) = R(−φ) =


cosφ sinφ

− sinφ cosφ


is the rotation matrix.

Then, in each agent’s own coordinate basis, the actual
kinematics of each agent with mismatched compasses are given
by
1Ȧ1 = A2 − A1 − D, (2a)
2Ȧ2 = R(−φ)(A1 − A2) + D, (2b)

where A1 − A2 is expressed in global coordinates, 1Ȧ1 and 2Ȧ2 are
the velocity vectors of agents 1 and2 expressed in each agent’s own
coordinate basis.

A relevant work for this problem is (Oh & Ahn, 2014), where
the authors considered that there exists the orientation mismatch
of local reference frames of the agents for the formation shape
control problem. A combination algorithm aimed at coordinate
frame orientation alignment and formation control was proposed
and the assumption was imposed that the orientation of each
agent’s coordinate basis can be exchanged between neighbors.
Distance errors have been considered in the context of formation
shape control without orientation in Belabbas, Mou, Morse, and

Fig. 1. Coordinates of agents 1 and 2.

Anderson (2012) and Sun,Mou, Anderson, andMorse (2013). Itwas
shown in Belabbas et al. (2012) that if the agents have different
understandings of either the desired distance for each pair of
agents or of the actual distance between them (perhaps due to
measurement bias), the resulting formation shape in the limit is
fixed but distorted relative to the desired shape, and generically
the actual motions converge to circular closed orbits in the two-
dimensional plane. A nongeneric situation can also arise in which
the radius of the circular orbit goes to infinity, and then the
formation simply translates at a constant velocity. This actually
always happens for a two-agent formation. The extension to the
case of the 3D tetrahedron formation shape control problem (and
indeedmore general 3D shapes)was considered in Sun et al. (2013)
and it was shown that the motion behavior is a typical helix. It
is in fact not hard to vary the conclusions of those papers and
establish that a distance error for the two agent formation above
leads the formation to take up a steady state spacing close to
the desired distance and to move with a velocity parallel to the
relative position vector at a speed proportional to the distance
mismatch. One could in fact postulate directional and distance
errors simultaneously. It would appear that the overall effect is just
the superposition of the two individual effects.

In this article, we first focus on the compass mismatch
problem for the two agent case (2) and then study the n agent
case. In particular, we show that the agents converge to a
fixed, but (relative to the desired formation) distorted formation
exponentially fast for all the cases. The shape error between
the actual final formation and the desired formation is explicitly
given. The case of time-varying mismatched compasses and the
estimation algorithms for the mismatched angle are also studied.
Based on the design of the estimators, the compensation algorithm
is proposed such that the desired formation shape is achieved. We
finally include discussions on the n agent case where n ≥ 3.

The organization of this article is as follows. In Section 2,
we study the two agent case. Both the cases of constant error
and time-varying error are considered. The estimation algorithms
and compensation algorithms are proposed in Section 3. We also
extend the results to the n agent case where n ≥ 3 in Sections 4
and 5. Concluding remarks are given in Section 6.

2. Two agent case

Let us go back to (2) and assume that φ is constant. By noting
the fact that 1Ȧ2 = R(φ)2Ȧ2, it is not hard to show that (2) can be
written as

Ȧ1 = A2 − A1 − D, (3a)
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