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a b s t r a c t

In this paper, some necessary and sufficient conditions are established for the constraint generalized
Sylvester matrix equations to have a common solution. The expression of the general common solution
is also given under the solvable conditions. In addition, a numerical example is presented to illustrate the
presented theory.
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1. Introduction

In this paper, we denote the complex number field by C. The
set of all matrices of dimension m × n is designated by Cm×n. I
denotes an identity matrix having appropriate dimension. For a
complex matrix A, the symbols A∗ and r(A) stand for the conjugate
transpose and rank of A, respectively. The Moore–Penrose inverse
of A ∈ Cm×n, denoted by AĎ, is defined to be the unique solution X
to the following four matrix equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

Furthermore, LA and RA stand for the two projectors LA = I − AĎA
and RA = I − AAĎ induced by A, respectively. It is obvious that

RA = (RA)
2

= (RA)
∗

= RĎA,

LA = (LA)∗ = (LA)2 = LĎA.
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The Sylvester matrix equation AX − XB = C or generalized
Sylvester matrix equation AX − YB = C has massive applications
in control theory (Wimmer, 1994; Wu, Duan, & Xue, 2007; Wu,
Duan, & Zhou, 2008), Hα-optimal control (Saberi, Stoorvogel, &
Sannuti, 2003), linear descriptor systems (Darouach, 2006), sen-
sitivity analysis (Barraud, Lesecq, & Christov, 2001), perturbation
theory (Li, 1999), system design (Syrmos & Lewis, 1994) and sin-
gular system control (Shahzad, Jones, Kerrigan, & Constantinides,
2011). The use of Sylvester and ∗-Sylvester matrix equations in the
disciplines of theory of orbits can be found in Terán and Dopico
(2011).

Recently, some mixed Sylvester matrix equations were inves-
tigated in some papers. Lee and Vu (2012) gave some solvability
conditions to mixed Sylvester matrix equations

A1X − YB1 = C1,
A2Z − YB2 = C2.

(1)

The researchers proved that the mixed Sylvester matrix equations
(1) are consistent if and only if there exist invertiblematrices P1, P2
and Q such that
A1 C1
0 B1


P1 = Q


A1 0
0 B1


,

A2 C2
0 B2


P2 = Q


A2 0
0 B2


.

The general solution to (1) was established by Wang and He
(2013). Wang and He (2014) considered some systems of coupled
generalized Sylvester matrix equations.
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Motivated by the work mentioned above and keeping the
interests and wide applications of generalized Sylvester matrix
equations, we consider constraint generalized Sylvester matrix
equations:

A3X = C3, YB3 = C4,
A4Z = C5, A5ZB5 = C6,
A1X − YB1 = C1, A2Z − YB2 = C2,

(2)

which is a more general form of the generalized Sylvester matrix
equation AX − YB = C and the mixed Sylvester matrix equations
(1). Solving system (2) will improve the theoretical advancement
of the mixed Sylvester matrix equations (1).

The principal task of this paper is to establish some necessary
and sufficient conditions and the expression of the general solution
to (2) when it is consistent.

The remainder of this paper is composed as follows. In Section 2,
we present some necessary and sufficient conditions for (2) to
have a solution and its exclusive expression is also constructed
when solvable conditions are satisfied. In Section 3, an algorithm
and a numerical example are given to exemplify our key result.
Conclusion is presented in Section 4.

2. Investigation to the system (2)

We commence from some known results. Notice that

A1U + VB1 + C3WD3 + C4ZD4 = E1 (3)

can play an important role in the construction of the solution to (2).

Lemma 2.1 (Wang & He, 2012). Let A1, B1, C3, D3, C4, D4 and E1
be known. Set

A = RA1C3, B = D3LB1 , C = RA1C4, D = D4LB1 ,
E = RA1E1LB1 , F = RAC, G = DLB, H = CLF .

Then Eq. (3) has a solution if and only if

RFRAE = 0, ELBLG = 0, RAELD = 0, RCELB = 0.

Under these conditions, the general solution to (3) is

U = AĎ1(E1 − C3WD3 − C4ZD4) − AĎ1S7B1 + LA1S6,

V = RA1(E1 − C3WD3 − C4ZD4)B
Ď
1 + A1A

Ď
1S7 + S8RB1 ,

W = AĎEBĎ − AĎCF ĎEBĎ − AĎHCĎEGĎDBĎ

− AĎHS2RGDBĎ + LAS4 + S5RB,

Z = F ĎEDĎ
+ HĎHCĎEGĎ

+ LF LHS1 + LFS2RG + S3RD,

where S1, . . . , S8 are arbitrarymatrices over Cwith appropriate sizes.

Lemma 2.2 (Baksalary & Kala, 1979). Known E, F and G matrices
over C of adequate dimensions, EX − YF = G has a solution if and
only if REGLF = 0. With this condition, its explicit solution is

X = EĎG + W1F + LEW2,

Y = −REGF Ď + EW1 + W3RF ,

whereW1,W2 andW3 are arbitrarymatrices over Cwith appropriate
sizes.

Lemma 2.3 (Marsaglia & Styan, 1974). Let K ∈ Cm×n, P ∈ Cm×t ,
Q ∈ Cl×n. Then

r

K
Q


= r(QLK ) + r(K),

r

K P


= r(RPK) + r(P),

r

K P
Q 0


= r(RKPLQ ) + r(P) + r(Q ).

Lemma 2.4 (Buxton, Churchouse, & Tayler, 1990). Let A1 and C1 be
known matrices with allowable dimensions. Then A1X = C1 has a
solution if and only if RA1C1 = 0. In this term, its general solution is

X = AĎ1C1 + LA1T ,

where T is an arbitrary matrix over C with appropriate size.

Lemma 2.5 (Buxton et al., 1990). Let B1 and D1 be known matrices
with feasible dimensions. Then YB1 = D1 has a solution if and only if
D1LB1 = 0. Under this condition, its general solution is

Y = D1B
Ď
1 + SRB1 ,

where S is an arbitrary matrix over C with appropriate size.

Lemma 2.6 (Wang, 2005). Let A4, A5, B5, C5 and C6 be given
matrices over C with able dimensions. Set A6 = A5LA4 . Then the
following statements are equivalent:

(1) The system of matrix equations A4Z = C5, A5ZB5 = C6 is
consistent.

(2)

RA4C5 = 0, RA6(C6 − A5A
Ď
4C5B5) = 0, C6LB5 = 0.

(3)

r[A4 C5] = r(A4), r

A4 C5B5
A5 C6


= r


A4
A5


,

r

C6
B5


= r(B5).

With these conditions, its general solution is

Z = AĎ4C5 + LA4A
Ď
6(C6 − A5A

Ď
4C5B5)B

Ď
5 + LA4LA6Q1 + LA4Q2RB5 ,

where Q1 and Q2 are arbitrarymatrices over Cwith appropriate sizes.

Now we demonstrate the main Theorem of this paper.

Theorem 2.1. Given A1, A2, A3, A4, A5, B1, B2, B3, B5, C1, C2, C3,
C4, C5 and C6 of fit dimensions over C. Set

A6 = A5LA4 A7 = A1LA3 , B7 = RB3B1,

C9 = C1 − A1A
Ď
3C3 + C4B

Ď
3B1, A8 = A2LA4LA6 ,

B8 = RB7RB3B2, A9 = −A7, B9 = RB3B2, B10 = RB5 ,

E1 = C2 − A2[A
Ď
4C5 + LA4A

Ď
6(C6 − A5A

Ď
4C5B5)B

Ď
5]

+ [C4B
Ď
3 − RA7C9B

Ď
7RB3 ]B2,

A10 = A2LA4 , A = RA8A9, B = B9LB8 , (4)

C = RA8A10, D = B10LB8 , E = RA8E1LB8 , (5)

F = RAC, G = DLB, H = CLF . (6)

Then the following statements are equivalent:
(1) The system (2) has a solution.
(2)

RA3C3 = 0, C4LB3 = 0, RA4C5 = 0,
C6LB5 = 0, RA6(C6 − A5A

Ď
4C5B5) = 0,

RA7C9LB7 = 0, RFRAE = 0, ELBLG = 0,
RAELD = 0, RCELB = 0.

(7)

(3)

r

A3 C3


= r(A3), r


C4
B3


= r(B3), (8)

r

A4 C5


= r(A4), (9)
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