Brief paper

Constraint generalized Sylvester matrix equations ${ }^{\star}$

Qing-Wen Wang ${ }^{\text {a }}$, Abdur Rehman ${ }^{\text {a,b }}$, Zhuo-Heng He ${ }^{\text {a }}$, Yang Zhang ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Shanghai University, Shanghai 200444, PR China
${ }^{\mathrm{b}}$ University of Engineering \& Technology, Lahore, Pakistan
${ }^{\text {c }}$ Department of Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

ARTICLE INFO

Article history:

Received 16 May 2015
Received in revised form
25 September 2015
Accepted 4 February 2016

Keywords:

Linear matrix equation
Generalized Sylvester matrix equation
Moore-Penrose inverse
Rank
Explicit solution

Abstract

In this paper, some necessary and sufficient conditions are established for the constraint generalized Sylvester matrix equations to have a common solution. The expression of the general common solution is also given under the solvable conditions. In addition, a numerical example is presented to illustrate the presented theory.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we denote the complex number field by \mathbb{C}. The set of all matrices of dimension $m \times n$ is designated by $\mathbb{C}^{m \times n}$. I denotes an identity matrix having appropriate dimension. For a complex matrix A, the symbols A^{*} and $r(A)$ stand for the conjugate transpose and rank of A, respectively. The Moore-Penrose inverse of $A \in \mathbb{C}^{m \times n}$, denoted by A^{\dagger}, is defined to be the unique solution X to the following four matrix equations
$A X A=A, \quad X A X=X, \quad(A X)^{*}=A X, \quad(X A)^{*}=X A$.
Furthermore, L_{A} and R_{A} stand for the two projectors $L_{A}=I-A^{\dagger} A$ and $R_{A}=I-A A^{\dagger}$ induced by A, respectively. It is obvious that
$R_{A}=\left(R_{A}\right)^{2}=\left(R_{A}\right)^{*}=R_{A}^{\dagger}$,
$L_{A}=\left(L_{A}\right)^{*}=\left(L_{A}\right)^{2}=L_{A}^{\dagger}$.

[^0]The Sylvester matrix equation $A X-X B=C$ or generalized Sylvester matrix equation $A X-Y B=C$ has massive applications in control theory (Wimmer, 1994; Wu, Duan, \& Xue, 2007; Wu, Duan, \& Zhou, 2008), H_{α}-optimal control (Saberi, Stoorvogel, \& Sannuti, 2003), linear descriptor systems (Darouach, 2006), sensitivity analysis (Barraud, Lesecq, \& Christov, 2001), perturbation theory (Li, 1999), system design (Syrmos \& Lewis, 1994) and singular system control (Shahzad, Jones, Kerrigan, \& Constantinides, 2011). The use of Sylvester and *-Sylvester matrix equations in the disciplines of theory of orbits can be found in Terán and Dopico (2011).

Recently, some mixed Sylvester matrix equations were investigated in some papers. Lee and Vu (2012) gave some solvability conditions to mixed Sylvester matrix equations
$A_{1} X-Y B_{1}=C_{1}$,
$A_{2} Z-Y B_{2}=C_{2}$.
The researchers proved that the mixed Sylvester matrix equations (1) are consistent if and only if there exist invertible matrices P_{1}, P_{2} and Q such that
$\left[\begin{array}{cc}A_{1} & C_{1} \\ 0 & B_{1}\end{array}\right] P_{1}=Q\left[\begin{array}{cc}A_{1} & 0 \\ 0 & B_{1}\end{array}\right]$,
$\left[\begin{array}{cc}A_{2} & C_{2} \\ 0 & B_{2}\end{array}\right] P_{2}=Q\left[\begin{array}{cc}A_{2} & 0 \\ 0 & B_{2}\end{array}\right]$.
The general solution to (1) was established by Wang and He (2013). Wang and He (2014) considered some systems of coupled generalized Sylvester matrix equations.

Motivated by the work mentioned above and keeping the interests and wide applications of generalized Sylvester matrix equations, we consider constraint generalized Sylvester matrix equations:
$A_{3} X=C_{3}, \quad Y B_{3}=C_{4}$,
$A_{4} Z=C_{5}, \quad A_{5} Z B_{5}=C_{6}$,
$A_{1} X-Y B_{1}=C_{1}, \quad A_{2} Z-Y B_{2}=C_{2}$,
which is a more general form of the generalized Sylvester matrix equation $A X-Y B=C$ and the mixed Sylvester matrix equations (1). Solving system (2) will improve the theoretical advancement of the mixed Sylvester matrix equations (1).

The principal task of this paper is to establish some necessary and sufficient conditions and the expression of the general solution to (2) when it is consistent.

The remainder of this paper is composed as follows. In Section 2, we present some necessary and sufficient conditions for (2) to have a solution and its exclusive expression is also constructed when solvable conditions are satisfied. In Section 3, an algorithm and a numerical example are given to exemplify our key result. Conclusion is presented in Section 4.

2. Investigation to the system (2)

We commence from some known results. Notice that
$A_{1} U+V B_{1}+C_{3} W D_{3}+C_{4} Z D_{4}=E_{1}$
can play an important role in the construction of the solution to (2).
Lemma 2.1 (Wang $\mathcal{E} H e, 2012$). Let $A_{1}, B_{1}, C_{3}, D_{3}, C_{4}, D_{4}$ and E_{1} be known. Set
$A=R_{A_{1}} C_{3}, \quad B=D_{3} L_{B_{1}}, \quad C=R_{A_{1}} C_{4}, \quad D=D_{4} L_{B_{1}}$,
$E=R_{A_{1}} E_{1} L_{B_{1}}, \quad F=R_{A} C, \quad G=D L_{B}, \quad H=C L_{F}$.
Then Eq. (3) has a solution if and only if
$R_{F} R_{A} E=0, \quad E L_{B} L_{G}=0, \quad R_{A} E L_{D}=0, \quad R_{C} E L_{B}=0$.
Under these conditions, the general solution to (3) is

$$
\begin{aligned}
U= & A_{1}^{\dagger}\left(E_{1}-C_{3} W D_{3}-C_{4} Z D_{4}\right)-A_{1}^{\dagger} S_{7} B_{1}+L_{A_{1}} S_{6} \\
V= & R_{A_{1}}\left(E_{1}-C_{3} W D_{3}-C_{4} Z D_{4}\right) B_{1}^{\dagger}+A_{1} A_{1}^{\dagger} S_{7}+S_{8} R_{B_{1}} \\
W= & A^{\dagger} E B^{\dagger}-A^{\dagger} C F^{\dagger} E B^{\dagger}-A^{\dagger} H C^{\dagger} E G^{\dagger} D B^{\dagger} \\
& -A^{\dagger} H S_{2} R_{G} D B^{\dagger}+L_{A} S_{4}+S_{5} R_{B} \\
Z= & F^{\dagger} E D^{\dagger}+H^{\dagger} H C^{\dagger} E G^{\dagger}+L_{F} L_{H} S_{1}+L_{F} S_{2} R_{G}+S_{3} R_{D},
\end{aligned}
$$

where S_{1}, \ldots, S_{8} are arbitrary matrices over \mathbb{C} with appropriate sizes.
Lemma 2.2 (Baksalary \& Kala, 1979). Known E, F and G matrices over \mathbb{C} of adequate dimensions, $E X-Y F=G$ has a solution if and only if $R_{E} G L_{F}=0$. With this condition, its explicit solution is
$X=E^{\dagger} G+W_{1} F+L_{E} W_{2}$,
$Y=-R_{E} G F^{\dagger}+E W_{1}+W_{3} R_{F}$,
where W_{1}, W_{2} and W_{3} are arbitrary matrices over \mathbb{C} with appropriate sizes.

Lemma 2.3 (Marsaglia \& Styan, 1974). Let $K \in \mathbb{C}^{m \times n}, P \in \mathbb{C}^{m \times t}$, $Q \in \mathbb{C}^{I \times n}$. Then
$r\left[\begin{array}{l}K \\ Q\end{array}\right]=r\left(Q L_{K}\right)+r(K)$,
$r\left[\begin{array}{ll}K & P\end{array}\right]=r\left(R_{P} K\right)+r(P)$,
$r\left[\begin{array}{ll}K & P \\ Q & 0\end{array}\right]=r\left(R_{K} P L_{Q}\right)+r(P)+r(Q)$.

Lemma 2.4 (Buxton, Churchouse, \& Tayler, 1990). Let A_{1} and C_{1} be known matrices with allowable dimensions. Then $A_{1} X=C_{1}$ has a solution if and only if $R_{A_{1}} C_{1}=0$. In this term, its general solution is
$X=A_{1}^{\dagger} C_{1}+L_{A_{1}} T$,
where T is an arbitrary matrix over \mathbb{C} with appropriate size.
Lemma 2.5 (Buxton et al., 1990). Let B_{1} and D_{1} be known matrices with feasible dimensions. Then $Y B_{1}=D_{1}$ has a solution if and only if $D_{1} L_{B_{1}}=0$. Under this condition, its general solution is
$Y=D_{1} B_{1}^{\dagger}+S R_{B_{1}}$,
where S is an arbitrary matrix over \mathbb{C} with appropriate size.
Lemma 2.6 (Wang, 2005). Let $A_{4}, A_{5}, B_{5}, C_{5}$ and C_{6} be given matrices over \mathbb{C} with able dimensions. Set $A_{6}=A_{5} L_{A_{4}}$. Then the following statements are equivalent:
(1) The system of matrix equations $A_{4} Z=C_{5}, A_{5} Z B_{5}=C_{6}$ is consistent.
(2)

$$
R_{A_{4}} C_{5}=0, \quad R_{A_{6}}\left(C_{6}-A_{5} A_{4}^{\dagger} C_{5} B_{5}\right)=0, \quad C_{6} L_{B_{5}}=0
$$

(3)

$$
\begin{aligned}
& r\left[A_{4} C_{5}\right]=r\left(A_{4}\right), \quad r\left[\begin{array}{cc}
A_{4} & C_{5} B_{5} \\
A_{5} & C_{6}
\end{array}\right]=r\left[\begin{array}{l}
A_{4} \\
A_{5}
\end{array}\right], \\
& r\left[\begin{array}{l}
C_{6} \\
B_{5}
\end{array}\right]=r\left(B_{5}\right) .
\end{aligned}
$$

With these conditions, its general solution is
$Z=A_{4}^{\dagger} C_{5}+L_{A_{4}} A_{6}^{\dagger}\left(C_{6}-A_{5} A_{4}^{\dagger} C_{5} B_{5}\right) B_{5}^{\dagger}+L_{A_{4}} L_{A_{6}} Q_{1}+L_{A_{4}} Q_{2} R_{B_{5}}$,
where Q_{1} and Q_{2} are arbitrary matrices over \mathbb{C} with appropriate sizes.
Now we demonstrate the main Theorem of this paper.
Theorem 2.1. Given $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, B_{1}, B_{2}, B_{3}, B_{5}, C_{1}, C_{2}, C_{3}$, C_{4}, C_{5} and C_{6} of fit dimensions over \mathbb{C}. Set
$A_{6}=A_{5} L_{A_{4}} A_{7}=A_{1} L_{A_{3}}, \quad B_{7}=R_{B_{3}} B_{1}$,
$C_{9}=C_{1}-A_{1} A_{3}^{\dagger} C_{3}+C_{4} B_{3}^{\dagger} B_{1}, \quad A_{8}=A_{2} L_{A_{4}} L_{A_{6}}$,
$B_{8}=R_{B_{7}} R_{B_{3}} B_{2}, \quad A_{9}=-A_{7}, \quad B_{9}=R_{B_{3}} B_{2}, \quad B_{10}=R_{B_{5}}$,
$E_{1}=C_{2}-A_{2}\left[A_{4}^{\dagger} C_{5}+L_{A_{4}} A_{6}^{\dagger}\left(C_{6}-A_{5} A_{4}^{\dagger} C_{5} B_{5}\right) B_{5}^{\dagger}\right]$
$+\left[C_{4} B_{3}^{\dagger}-R_{A_{7}} C_{9} B_{7}^{\dagger} R_{B_{3}}\right] B_{2}$,
$\begin{array}{lll}A_{10}=A_{2} L_{A_{4}}, & A=R_{A_{8}} A_{9}, & B=B_{9} L_{B_{8}}, \\ C=R_{A_{8}} A_{10}, & D=B_{10} L_{B_{8}}, & E=R_{A_{8}} E_{1} L_{B_{8}},\end{array}$
$F=R_{A} C, \quad G=D L_{B}, \quad H=C L_{F}$.
Then the following statements are equivalent:
(1) The system (2) has a solution.
(2)

$$
\begin{array}{ll}
R_{A_{3}} C_{3}=0, & C_{4} L_{B_{3}}=0, \quad R_{A_{4}} C_{5}=0, \\
C_{6} L_{B_{5}}=0, & R_{A_{6}}\left(C_{6}-A_{5} A_{4}^{\dagger} C_{5} B_{5}\right)=0, \\
R_{A_{7}} C_{9} L_{B_{7}}=0, & R_{F} R_{A} E 0, \quad E L_{B} L_{G}=0, \\
R_{A} E L_{D}=0, & R_{C} E L_{B}=0 .
\end{array}
$$

(3)
$r\left[\begin{array}{ll}A_{3} & C_{3}\end{array}\right]=r\left(A_{3}\right), \quad r\left[\begin{array}{l}C_{4} \\ B_{3}\end{array}\right]=r\left(B_{3}\right)$,
$r\left[\begin{array}{ll}A_{4} & C_{5}\end{array}\right]=r\left(A_{4}\right)$,

https://daneshyari.com/en/article/7109400

Download Persian Version:
https://daneshyari.com/article/7109400

Daneshyari.com

[^0]: this research was supported by the grants from the National Natural Science Foundation of China (11571220), the Key Project of Scientific Research Innovation Foundation of Shanghai Municipal Education Commission (13ZZ080) and the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN 312386-2015). The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Delin Chu under the direction of Editor Ian R. Petersen.

 E-mail addresses: wqw369@yahoo.com, wqw@t.shu.edu.cn (Q.-W. Wang), abdur_rehman_1982pk@yahoo.com (A. Rehman), hzh19871126@126.com (Z.-H. He), yang.zhang@umanitoba.ca (Y. Zhang).

