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a b s t r a c t

This paper investigates distributed containment tracking for multiple stochastic nonlinear systems with
multiple dynamic leaders under directed network topology. The control input of each agent can only use
its local state and the states of its neighbors. With the backstepping design method, distributed tracking
controllers are designed. By using stochastic analysis and graph theory, it is shown that the followers’
outputs will exponentially converge to the convex hull spanned by the dynamic leaders’s outputs with
tunable tracking errors while all the states of the closed-loop system remain bounded in probability. A
numerical example is provided to illustrate the effectiveness of the theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since stochastic stabilization theory was introduced in 1960s
by Kushner in Kushner (1967), much progress has been made
on stabilization of stochastic nonlinear systems described by
Itô stochastic differential equations. The existing literature on
controller design for stochastic nonlinear systems can be mainly
divided into two types: using Lyapunov functions in the form of
quadratic functions multiplied by different weighting functions
(Pan & Basar, 1999) and adopting Krstić and Deng’s quartic
Lyapunov functions method (Deng & Krstić, 1997, 2000; Krstić &
Deng, 1998). Subsequently, these design techniques are further
developed in Barbu (2012), Barbu, Da Prato, and Rockner (2009),
Li and Wu (2013) and Shi, Xia, Liu, and Rees (2006).

Recently, the study on leader-following multi-agent systems
has attracted a great deal of attention in the control community
due to their wide practical applications in areas such as large
scale robotic systems (Belta & Kumar, 2002) and biological systems
(Olfati-Saber, 2006). The authors in Hu and Hong (2007) and
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Zhu and Cheng (2010) consider the leader-following consensus
problem for a group of second-order autonomous agents with
time-varying delays. When there exist noises in communication
channels, the authors in Djaidja and Wu (2015), Djaidja, Wu,
and Fang (2015) and Huang and Manton (2009) focus on the
mean square consensus tracking problem of multi-agent systems
by employing stochastic analysis and algebraic graph theory. A
common feature of the above works is that only a single leader is
considered.

The consensus-like problem with multiple leaders called the
containment control, where the followers are driven into the
convex hull spanned by the multiple leaders, is studied in Cao,
Ren, and Egerstedt (2012), Li Ren, and Xu (2012) and Liu, Xie,
and Wang (2012). The authors in Cao et al. (2012) study the
distributed containment control of a group of mobile autonomous
agents with multiple stationary or dynamic leaders under both
fixed and switching directed network topologies. The authors
in Liu et al. (2012) establish continuous-time and sampled-data
based protocols for networked multi-agent systems. The authors
in Li et al. (2012) investigate the containment control problem
for a group of autonomous vehicles modeled by double-integrator
dynamics.

It is noted that most of the physical systems are nonlinear
(Khalil, 2002) and stochastic (Crandall & Mark, 1963) in nature,
such as stochastic mobile autonomous vehicles (Schadschneider,
Chowdhury, & Nishinari, 2010) and stochastic Lagrangian systems
(Cui, Wu, Xie, & Shi, 2013). To our best knowledge, there is few
results on containment control of multiple stochastic nonlinear
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systems in the open literature which motivates this study. The
main contributions of this paper include:

(1) Only the information of the leaders’ outputs is required to be
available to a subgroup of followers, and the leaders’ dynamics
can be completely unknown. Therefore, the leaders’ model can
be more general than those in existing containment results for
the leaders with known dynamics (Li, Xie, & Zhang, 2015; Lou
& Hong, 2012; Notarstefano, Egerstedt, & Haque, 2011).

(2) This work considers the followers with inherently nonlinear
diffusion terms and arbitrary number of integrators, and also
considers coupling terms in agents dynamics and limited in-
formation exchange among neighboring agents. Containment
control of such multiple stochastic nonlinear systems is very
challenging, andno result has been reported. A distributed con-
tainment control scheme has been proposed in this work.

(3) It can be proved that the followers’ outputs will eventually
converge to the convex hull spanned by the dynamic leaders’s
outputs with tunable tracking errors. In other words, not only
can the convergence of the followers’ outputs be proved, but
also can the convergent points of the followers’ outputs be
specified.

The remainder of the paper is organized as follows. Section 2
describes the problem to be investigated. Section 3 addresses
containment controller design and performance analysis of the
closed-loop control system. Section 4 gives a simulation example,
which is followed by a conclusion in Section 5. Appendices A and B
collect some useful lemmas and the proof of a proposition.

2. Problem formulation and some preliminaries

In this paper, we consider a network composed of N stochastic
nonlinear systems as followers and K leaders. The followers’
dynamics are described as follows:

dxij = xi,j+1dt + Ωij(x̄ij)dω, j = 1, . . . , ni − 1,
dxi,ni = uidt + Ωi,ni(x̄i,ni)dω,

yi = xi1, (1)

where x̄ij = (xi1, . . . , xij)T ∈ Rj, ui ∈ R, yi ∈ R are the state,
input, output of the ith follower, respectively, i = 1, . . . ,N .ω is an
m-dimensional standard Wiener process defined on the complete
probability space (Ω, F , Ft , P) with a filtration Ft satisfying the
usual conditions, that is, it is increasing and right continuous while
F0 contains all P-null sets. Ωij(x̄ij) : Rj

→ R1×r , i = 1, . . . ,N, j =

1, . . . , ni, are C1 functions.
The leaders’ outputs are defined as rs(t) ∈ R, s = 1, . . . , K .

Remark 1. From (1), the diffusion termsΩij(x̄ij), i = 1, . . . ,N, j =

1, . . . , ni, are inherently nonlinear, which is completely different
from some semilinear conditions such as global Lipschitz condition
(Li, Ren, Liu, & Fu, 2013).

We use a digraph G = (Vf , E, A) to describe the relationship
amongN followers (1)with the set of nodesVf = {1, 2, . . . ,N}, set
of arcs E ⊂ Vf ×Vf , and a weighted adjacencymatrix A = (aij)n×n
with nonnegative elements. (j, i) ∈ E means that agent j can
directly send information to agent i. The set of neighbors of vertex
i is denoted by Ni = {j ∈ V : (j, i) ∈ E, i ≠ j}. aij > 0 if
node j is a neighbor of node i and aij = 0 otherwise. A sequence
(i1, i2), (i2, i3), . . . , (ik−1, ik) of edges is called a directed path from
node i1 to node ik. The diagonal matrix D = diag(κ1, κ2, . . . , κn) is
the degree matrix, whose diagonal elements κi =


j∈Ni

aij. The
Laplacian of a weighted digraph G is defined as L = D − A.

To describe the relationship between the followers (1) and the
leaders, define a directed topology Ḡ = (V̄, Ē), where V̄ = Vf ∪

Vl, Vf = {1, 2, · · · ,N}, Vl = {1, 2, . . . , K}, and its set of arcs

Ē ⊂

Vf × Vf ∪ Vf × Vl


. If for every node i in Vf , one can find

a node j in Vl, such that there is a path in Ḡ from node j to i, we
say that the set Vl is globally reachable in Ḡ. A diagonal matrix
B = diag(

K
s=1 b1s, . . . ,

K
s=1 bNs) is the leader adjacency matrix

associated with Ḡ, where bis > 0 if node s in Vl is a neighbor of
node i in Vf and bis = 0 otherwise. Denote H = L + B.

To proceed further, we need the following assumptions.

Assumption 1. The leaders’ outputs ri(t) and their derivatives
ṙi(t), i = 1, . . . , K , are bounded. The jth leader’s output rj(t) ∈ R
and ṙj(t) are only available for the ith follower satisfying j ∈ Ni, i =

1, . . . ,N .

Assumption 2. The leaders set Vl is globally reachable in the
directed graph Ḡ.

Now,we are ready to give the definition for distributed contain-
ment output tracking.

Definition 1. The distributed containment output tracking prob-
lem for system (1) is solvable if one can find nonnegative constants
κij(j = 1, . . . , K) satisfying

K
j=1 κij = 1 and for any given ε > 0,

there exists a set of distributed control laws such that:

(a) all the states of the closed-loop system are bounded in proba-
bility;

(b) for any initial value x(t0), there is a finite-time T (x(t0), ε) such
that

E
yi(t) −

K
j=1

κijrj(t)
 < ε,

∀t > T (x(t0), ε), i = 1, . . . ,N.

Remark 2. FromDefinition 1, one knows that
K

j=1 κijrj(t)belongs
to the convex hull spanned by the dynamic leaders’ outputs. In
other words, if the distributed containment output tracking prob-
lem defined in Definition 1 is solved, the followers’ outputs will
eventually converge to the convex hull spanned by the dynamic
leaders’s outputswith tunable tracking errors. Definition 1not only
describes the convergence, but also points out the specific limit
point the followers will converge to, which is different from the
available results (such as Lou & Hong, 2012) which only addresses
the convergence.

Remark 3. Assumption 2 is necessary for the solvability of the
containment output tracking problem of the system (1). If the
leaders set Vl is not globally reachable in the digraph Ḡ, as
demonstrated by Lou and Hong (2012), one can find some
followers separated from all leaders and form several sub-systems
without any interconnections between them. Therefore, it is
impossible to achieve output tracking for these followers.

The following lemma is crucial for the distributed controller
design.

Lemma 1. All the eigenvalues of the matrix H = L + B have positive
real parts if and only if Assumption 2 holds.

Proof. From the definition of H , it is easy to find that this lemma
is a special case of Lemma 1 in Li et al. (2015).

The objective of this paper is to design distributed controllers
to solve the containment output tracking problem for system (1).
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