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a b s t r a c t

The analysis of discontinuous extremum seeking (ES) controllers, e.g. those applicable to digital systems,
has historically been more complicated than that of continuous controllers. We establish a simple and
general extension of a recently developed bounded form of ES to a general class of oscillatory functions,
including functions discontinuous with respect to time, such as triangle or square waves with dead time.
We establish our main results by combining a novel idea for oscillatory control with an extension of
functional analytic techniques originally utilized by Kurzweil, Jarnik, Sussmann, and Liu in the late 80s and
early 90s and recently studied by Dürr et al. We demonstrate the value of the result with an application
to inverter switching control.

Published by Elsevier Ltd.

1. Introduction

Classical Extremum Seeking Optimization (ESO) began in the
1920s, using a slowly oscillating perturbation to guide a system’s
output to an extremum value (Leblanc, 1922). A series of papers
in the 50s and 60s (Meerkov, 1967; Morosanov, 1957; Obabkovm,
1967; Ostrovskii, 1957; Volosov, 1962), were the first analytic
studies of the stability of ESO. These results were refined and
expanded to a wider class of systems in Krstić and Wang (2000),
Tan, Nešić, and Mareels (2006), Tan, Nešić, Mareels, and Astolfi
(2009), Guay and Zhang (2003), Srinivasan (2007), Guay (2014).

This form of ESO has been used in many applications (Moase,
Manzie, Nesic, & Mareels, 2010) with unknown/uncertain sys-
tems (Rotea, 2000) and with discontinuous sliding-mode type ES
perturbations (Pan, Özgünder, & Acarman, 2003). Furthermore,
ESO has been used for applications such as active flow con-
trol (Henning et al., 2007; Kim, Kasnakoglu, Serrani, & Samimy,
2009), aeropropulsion (Wiederhold et al., 2009), cooling sys-
tems (Li, Rotea, Chiu, Mongeau, & Paek, 2005), wind energy (Cre-
aby, Li, & Seem, 2009), photovoltaics (Lei, Li, Chen, & Seem,
2011), electromagnetic valve actuation (Peterson & Stefanopoulou,
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2004), human exercise machines (Zhang, Dawson, Dixon, &
Xian, 2006), enhancing mixing in magnetohydrodynamic channel
flows (Ou et al., 2008), controlling Tokamak plasmas (Luo & Schus-
ter, 2009), and recently, utilizing a multivariable Newton-based
ESO scheme, for the power optimization of photovoltaic micro-
converters (Ghaffari, Krstic, & Seshagiri, 2014) as well as Newton-
based stochastic extremum seeking (Liu & Krstic, 2014).

In Scheinker and Krstic (2013) a new formof ExtremumSeeking
Control and Optimization (ESCO) was introduced which, unlike
ESO, is applicable to unstable and time-varying systems and
utilizes the extremumseeker as the feedback controller itself. ESCO
is closely related to the field of vibrational control and highly
oscillatory systems (Dürr, Stanković, Ebenbauer, & Johansson,
2013; Kapitza, 1951; Kurzweil & Jarnik, 1987; Martinez, Cortes, &
Bullo, 2003; Meerkov, 1980; Moreau & Aeyels, 2000; Sussmann,
1992; Sussmann & Liu, 1991). Whereas ESO has been used to
optimize the output of a-priori stable, controlled systems, ESCO can
beused to control andoptimize uncertain, time-varying, open-loop
unstable systems.

Since its inception ESCO has been used to optimize a high
voltage converter modulator (Scheinker, Bland, Krstic, & Audia,
2013); to stabilize and expand the region of attraction of a
pendulum’s vertical equilibrium point (Michalowsky & Ebenbauer,
2013); it has been studied on manifolds (Dürr, Stanković,
Ebenbauer, & Johansson, 2014); a non-differentiable form of ESCO
was developed in which the system’s control efforts settle to
zero as equilibrium is approached (Scheinker & Krstic, 2014a);
and a bounded form of ESCO was developed for unknown
and possibly open-loop unstable systems in which the control
efforts and parameter update rates have analytically known
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bounds (Scheinker & Krstic, 2014b), and implemented in hardware
to tune a particle accelerator based only on an extremely noisy
measurement signal (Scheinker, Baily, Young, Kolski, & Prokop,
2014).

Our main result, Theorem 1, extends the study of bounded
ESCO from smoothly varying sinusoidal functions, to a much
larger useful class of not necessarily continuous functions, e.g., a
perturbing signal common in digital systems, a square wave with
dead time between pulses. Theorem 1 has four useful properties:
(1) It establishes feedback control that is, on average, immune to

additive, state-independent measurement noise.
(2) It is applicable to time-varying nonlinear systems.
(3) It establishes the on-average equivalence of variety of control

choices that may be used with a range of different types of
hardware.

(4) The proof is simpler and the result more general than the
related work in Dürr et al. (2013), Kurzweil and Jarnik (1987),
Sussmann and Liu (1991), Sussmann (1992), Moreau and
Aeyels (2000).

2. Main theoretical result

We use the notation u(y, t) = u(ψ̂(x, t), t) to emphasize that
the controller need not have direct access to x, i.e., that u is a
function of t and of a noise corruptedmeasurement of a potentially
unknown function ψ̂(x, t) = ψ(x, t) + n(t). We recall that a
sequence of functions {fk} ⊂ L2[0, 1] is said to converge weakly
to f in L2[0, 1], denoted fk ⇀ f , if

lim
k→∞

⟨fk, g⟩ = lim
k→∞

 1

0
fk(τ )g(τ )dτ

=

 1

0
f (τ )g(τ )dτ = ⟨f , g⟩, ∀g ∈ L2[0, 1].

Our primary result is the following.

Theorem 1. Consider the vector-valued system

ẋ = f (x, t)+ g(x, t)u(y, t), (1)

y = ψ(x, t)+ n(t) = ψ̂(x, t), (2)

where x ∈ Rn, and the functions f : Rn
× R → Rn, g : Rn

× R →

Rn×n, ψ : Rn
× R → R, and n(t) : R → R are unknown and twice

continuously differentiable with respect to x. Also, ψ and ∂ψ/∂t are
bounded with respect to t for x in a compact set, and n(t), ṅ(t) are
bounded. Consider a controller u : R × R → Rn, given by

u(y, t) =

m
i=1

ki(y, t)hi,ω(t), ki : R × R → Rn, (3)

where the functions ki(y, t) are continuously differentiable and the
functions hi,ω(t) are piece-wise continuous. System (1)–(3) has the
following equivalent closed-loop form

ẋ(t) = f (x, t)+

m
i=1

bi(x, t)hi,ω(t), (4)

bi(x, t) = g(x, t)ki

ψ̂(x, t), t


. (5)

Suppose that the integrals of the functions hi,ω(t) satisfy the uniform
limits

lim
ω→∞

Hi,ω(t) = lim
ω→∞

 t

t0
hi,ω(τ )dτ = 0, (6)

and the weak limits

hi,ω(t)Hj,ω(t) ⇀ λi,j(t). (7)

Consider also the average system related to (1)–(3) as follows

˙̄x = f (x̄, t)−

n
i,j=1

λi,j(t)
∂bi(x̄, t)
∂ x̄

bj(x̄, t), x̄(0) = x(0). (8)

For any compact set K ⊂ Rn, any t0, T ∈ R≥0, and any δ > 0, there
exists ω⋆ such that for each ω > ω⋆, the trajectories x(t) and x̄(t)
of (4) and (8), satisfy

max
t∈[t0,t0+T ]

∥x(t)− x̄(t)∥ < δ. (9)

Furthermore,

lim
t→∞

∥x̄(t)∥ = 0 =⇒ lim
t→∞

∥x(t)∥ < δ.

In other words, uniform asymptotic stability of (8) over K implies the
semiglobal practical uniform asymptotic stability of (1)–(3).
The proof and definitions are given in the Appendix.

A simple example of a system of form (1)–(3) will illustrate the
consequences of the theorem using the controller that motivated
this work.

Example 1. Consider the system

ẋ = ax + bu, u =
√
αω cos


ωt + kx2


(10)

noting that when the sign of b is unknown, one cannot design a
classical PID type stabilizing controller. Theorem 1 implies that the
closed loop average system related to (10) is given by

˙̄x =

a − kαb2


x̄, (11)

which is stabilized by a sufficiently large choice of kα > a
b2
,

regardless of the sign of b. We now provide the details of how
Theorem 1 is applied, carrying out weak limit calculations which
we will routinely omit in the remainder of the paper. In the
notation used in Theorem 1, system (10) may be written as

ẋ = ax
f (x)

+ b
g(x)

u, y = x
ψ(x)

(12)

u =
√
αω cos


ωt + kx2


=

√
αω cos (ωt)  

h1,ω(t)

cos

kx2

  
k1(x)

−
√
αω sin (ωt)  
h2,ω(t)

sin

kx2

  
k2(x)

, (13)

which has closed loop form

ẋ = ax +
√
αω cos (ωt)  

h1,ω(t)

b cos

kx2

  
b1(x)

−
√
αω sin (ωt)  
h2,ω(t)

b sin

kx2

  
b2(x)

. (14)

Consider the sequence of functions {h1,ω(t)} = {
√
αω cos(ωt)}

and {h2,ω(t)} = {−
√
αω sin(ωt)} where ω → ∞. Consider

corresponding sequences {Hi,ω(t) =
 t
0 hi,ω(τ )dτ } where

H1,ω(t) =


α

ω
sin (ω(t)) , H2,ω(t) =


α

ω
cos (ω(t))

and notice that for each i, the functions Hi,ω(t) converge uniformly
to 0 as ω → ∞. In the present example, according the Rie-
mann–Lebesgue Lemma (Conway, 1990),

h1,ω(t)H1,ω(t) = α cos (ωt) sin (ωt) ⇀ λ1,1 = 0

h1,ω(t)H2,ω(t) = α cos2 (ωt) ⇀ λ1,2 =
α

2

h2,ω(t)H1,ω(t) = −α sin2 (ωt) ⇀ λ2,1 = −
α

2
h2,ω(t)H1,ω(t) = −α sin (ωt) cos (ωt) ⇀ λ2,2 = 0.
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