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a b s t r a c t

This article studies iterative learning control (ILC) wheremultiple heterogeneous linear subsystems (with
potentially different individual dynamics) update their input simultaneously based on the error in a
collaboratively controlled desired output. A challenge is that convergence of iterative learning for each
individual subsystem (when the other subsystems are not learning) may not guarantee convergence
under collaborative-(co-) learning. This work proposes an update-partitioning approach for co-learning
and demonstrates convergence whenever the individual, iterative learning for each subsystem is
convergent. The main contribution of this work is to show that any unity partition (where the sum of the
partition is one) of the update law ensures convergence of the co-learning. Since the time partitioning of
the update can be chosen independent of the individual learning (convergence) rate of the subsystems, the
proposed approach enables the separate design of each individual subsystem’s input-update law followed
by conjoining of the individual update laws for co-learning using the partitioning approach. Additionally,
an intermittent time partitioning is developed when the desired trajectory is not known to all (but only
some) of the co-learning subsystems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This article studies iterative learning control (ILC) where
multiple (n) heterogeneous linear subsystems (with potentially
different individual dynamics, Gi) update their input ui simultane-
ously based on the error in a collaboratively controlled output y
described in the Laplace domain by y(s) =

n
i=1 Gi(s)ui(s). Such

collaborative control of a common output y arises in applications
such as: (i) active orthosis where a joint is being controlled by
a human and a machine, e.g., Bruce Wiggin, Sawicki, and Collins
(2011); (ii) dual-stage positioners where a high-bandwidth low-
range actuator augments the performance of a low-bandwidth but
large-range actuator, e.g., Schroeck, Messner, and McNab (2001)
and Brinkerhoff and Devasia (2000). Multiple (redundant) actua-
tors have also been used for collaborative positioning, e.g., using
independent actuators or legs to move a single stage, e.g., Kim and
Chang (2013) and Wilcox and Devasia (2015), which is similar to
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use of multiple actuators in nature such as arrays of cilia for move-
ment in fluid environments, multiple muscle fibers in biological
actuators, and multiple-legs in centipedes and millipedes. With
increasingly distributed sensing, computing and actuation, there
is interest in each of the subsystems to operate somewhat inde-
pendently, which can enable the potential recruitment of different
actuator subsystems for varying tasks, e.g., similar to the recruit-
ment of different muscle fiber sets (motor units) tomanage chang-
ing muscle loads. Moreover, since complex tasks could be broken
into previously designed trajectories, there is interest in learning
to control specific desired (pre-specified) trajectories. Therefore,
this work investigates the iterative learning of a common desired
output trajectory with multiple subsystems.

Convergence of iterative learning to achieve output tracking
of a single output, with a single subsystem, has been well stud-
ied, e.g., Arimoto, Kawamura, and Miyazaki (1984), Ghosh and
Paden (2002), Tien, Zou, and Devasia (2005), Ahn, Chen, andMoore
(2007), Ghosh and Paden (2001), Mishra and Tomizuka (2005) and
Bristow and Alleyne (2008). Note that, for perfect control of a de-
sired output y = yd with a single system G, the input u depends on
the inverse G−1 of the system G, i.e., u = G−1yd. This hasmotivated
the use of the inverse Ĝ−1 of the known model Ĝ of the system G
in the iteration update law (Atkeson & McIntyre, 1986; Ghosh &
Paden, 2002; Tien et al., 2005). For such cases, convergence to the
desired output can be shownprovided the phase error in themodel
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is less than π/2 and the iteration gain is sufficiently small (Tien
et al., 2005). This work aims to generalize such convergence condi-
tions, developed for single input single output systems, tomultiple
subsystems that collaboratively learn to track a single desired out-
put. However, for iterative co-learning with multiple subsystems,
the output error depends on all then subsystems {Gi}

n
i=1, and there-

fore the update for the input ui for each subsystem (and therefore,
the convergence condition) becomes dependent on the dynamics
of the other subsystems. This interdependence implies that it can
be challenging to determine convergence without knowledge of
the dynamics of all the subsystems.

The specific issue addressed here is the question whether con-
vergence of iterative learning for each individual subsystem (when
the other subsystems are not learning) can be used to develop
convergence conditions that do not require knowledge of the dy-
namics of all the subsystems. Note that convergence properties for
special cases are known. For example, convergence follows if only
one of the subsystems is actively learning and the others are not.
Moreover, since typical convergence conditions constrain the gain
of the update law to be sufficiently small, it is also possible to
demonstrate that lack of co-ordination (e.g., when all the systems
aim to learn simultaneously based on individual update laws) can
lead to loss of convergence. For example, the gain of the update
law increases and can lead to loss of convergence with increasing
number n of (similar) subsystems that are using the same update
law. Establishing convergence is also possible when the desired
output yd can be mapped into relatively independent predeter-
mineddesired output yd,i for each subsystem, e.g., formanipulation
with multiple (but minimal number of) robotic arms (Kawasaki,
Ueki, & Ito, 2006). Moreover, convergence can be established for
consensus-type algorithms that seek to achieve the same out-
put yi = yd for each agent in networked multi-agent systems,
e.g., Chen, Hua, and Ge (2014) and Choi, Oh, and Horowitz (2009)—
in contrast, the current work aims to collaboratively control a sin-
gle total output, yd =


i yi, where all the individual subsystem

outputs yi are not required to be equal.
The main contribution of this work is to show that any unity

partition (where the sum of the partition is one) of the update en-
sures convergence of the co-learning. While the selection of the
update partitioning does require some centralization, it could also
be as simple as an equal distribution of the update authority to
each subsystem, i.e., a scaling of the update by 1/n where n is
the number of subsystems, as shownwith the simulation example.
The specific partition can be frequency dependent and time vary-
ing, and therefore, be used to develop algorithms that modify the
distribution of control effort among the different subsystems and
potentially manage actuator bandwidth constraints in different
frequency ranges as in Devasia (2002). Additionally, an intermit-
tent time-partitioning-based update law is developed for the case
when the desired trajectory is not known to all of the subsystems
that are co-learning.

2. Problem formulation

The goal is to achieve desired output y = yd for a system with
n linear subsystems {Gi}

n
i=1, described by

y(s) =

n
i=1

Gi(s)ui(s). (1)

The n inputs to achieve the desired output yd are co-learnt in an
iterative manner, with the update law described in the frequency
domain at the kth iteration step,

ui,k+1(ω) = ui,k(ω) + ρi,k(ω)Ĝ−1
i (ω) [yd(ω) − yk(ω)] (2)

for all frequency ω, i = 1, . . . n, where ρi,k(ω) is a real-valued
scalar, k is a positive integer, yk is the output,

yk(ω) =

n
i=1

Gi(ω)ui,k(ω), (3)

the term in the square bracket in Eq. (2) represents the output
error, Ĝi is the knownmodel of the ith subsystem Gi, and the value
of a model G evaluated on the imaginary axis of the complex plane
is defined as G(ω) = G(s)


s=jω

with j =
√

−1.

Assumption 1 (System and Model Properties). In the following,
each subsystem Gi (i = 1, . . . , n) and its model Ĝi are stable with
hyperbolic zero dynamics, i.e., all zeros have a nonzero real part.
Also, these transfer functions are not trivial Gi ≠ 0 and Ĝi ≠ 0.

Remark 1 (Model Invertibility). Hyperbolic zero dynamics implies
invertibility of the model Ĝi(ω) in the input update law in Eq.
(2), and also ensures robustness of the inverse under modeling
uncertainty (Devasia, 2002).

With a single input um, the iterative control in Eq. (2) converges
if the modeling error is sufficiently small, as shown in Tien et al.
(2005), and stated formally below.

Lemma 1 (Single-input Convergence). With only one input ui,
i.e., um,1 = 0 and ρm,k = 0, for all m ≠ i, a finite initial input
ui,1(ω) and a fixed iteration gain ρ i(ω) = ρi,k(ω), the single-input
iterations in Eq. (2) converges to the inverse input ui,inv at frequency
ω, i.e., limk→∞ ui,k(ω) = ui,inv(ω) = G−1

i (ω) [yd(ω)], which results
in exact tracking of the desired output yd(ω), i.e., limk→∞ yk(ω) =

limk→∞ Gi(ω)ui,k(ω) = yd(ω) if and only if the magnitude of the
phase uncertainty ∆Φ,i in the model and the update gain ρ i(ω) are
sufficiently small

|∆Φ,i(ω)| < π/2

0 < ρ i(ω) <
2 cos


∆Φ,i(ω)


∆M,i(ω)

= ρ∗

i (ω)
(4)

where themagnitude uncertainty∆M,i and the phase uncertainty∆φ,i
are defined by

Gi(ω)

Ĝi(ω)
= ∆M,i(ω)ej∆φ,i(ω). (5)

Proof. This follows from Lemma 1 in Tien et al. (2005). �

Assumption 2. In the following, it is assumed that the modeling
uncertainty for each subsystem Gi and the associated fixed gain
ρ i(ω) ≠ 0 satisfy the single-input convergence conditions in
Eq. (4).

The challenge to establish convergence with co-learning is the
interdependence of the subsystems in the update law. In particular,
the input update can be rewritten from Eqs. (1), (2) as
ui,k+1(ω) − ui,k(ω)

=


1 −

ρi,k(ω)Gi(ω)

Ĝi(ω)

 
ui,k(ω) − ui,k−1(ω)


−

n
j=1,j≠i

ρi,k(ω)Gj(ω)

Ĝi(ω)


uj,k(ω) − uj,k−1(ω)


.

Without the second term on the right hand side, the input-
learning iterations would be a contraction if the gain term 1 −

(ρi,k(ω)Gi(ω)/Ĝi(ω)) is small. However, the interdependence of
the subsystems due to the coupling between the model Ĝi and
the other subsystems Gj, in the second term, makes it challenging
to develop conditions for co-learning. Hence, the problem is to
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