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algorithm is proposed. This algorithm ensures finite-time convergence to the third-order sliding set, using
only information about the output and its first derivative. We prove the convergence of the proposed
algorithm via a homogeneous, continuously differentiable and strict Lyapunov function.
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1. Introduction

Sliding-mode control (SMC) (Edwards & Spurgeon, 1998; Utkin,
Guldner, & Shi, 2009) is one of the most efficient control techniques
for controlling plants under heavy uncertainty conditions. The
goal of such controllers is to (theoretically exactly) compensate a
matched uncertainty by keeping some properly chosen (sliding)
variables at zero. To reach this goal, theoretically infinite switching
frequency is required (Utkin et al., 2009). Such control is not
desirable from the implementation point of view due to the
oscillations caused by the high-frequency switching, which results
in dangerous system vibrations (chattering) (see e.g. Boiko, 2009,
Edwards & Spurgeon, 1998, Utkin et al., 2009).

In the last two decades, a number of methods have been pro-
posed to alleviate the chattering effect (see Fridman, 2011 and ref-
erences cited therein). One of the most popular methods is the
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higher-order sliding modes (HOSM) approach (Bartolini, Ferrara,
& Usai, 1998; Levant, 1993, 2003). HOSM algorithms, for systems
with relative degree r, ensure finite-time convergence to zero of
the output o and its first (r — 1) derivatives. The asymptotic ac-
curacy of the rth HOSM was analyzed in Levant (1993), where it
was shown that the best possible asymptotic accuracy with e.g.
sampling interval 7 is 0¥ = 0(7"7),j = 0,1,....,r — 1.
Homogeneous HOSM controllers of order r provide this accuracy
(Levant, 2005a), so that they have this optimal precision of the
output tracking with respect to the sampling step, measurement
noises, and fast actuators’ dynamics (Levant, 1993, 2003, 2005b;
Levant & Fridman, 2010). The main drawback is that the control
signal is discontinuous, which produces chattering.

The super-twisting algorithm (STA) plays a special role among
the sliding-mode controllers. In contrast to the other HOSM
algorithms, it was designed for systems with relative degree one
with respect to the output o, and has the following advantages:
(i) it compensates matched Lipschitz uncertainties/perturbations,
while first-order sliding-mode can compensate discontinuous and
uniformly bounded uncertainties/perturbations; (ii) it provides
finite-time convergence to 0 = ¢ = 0 simultaneously; (iii) it
requires only the information of the output o; (iv) it generates a
continuous control signal and, consequently, reduces chattering
effects; (v) it has sliding accuracy of order one with respect to ¢
and two with respect to o.

The first proof of the convergence of the STA was based on
the idea of majorant curves (Levant, 1993, 1998). Later, proofs
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based on Lyapunov functions were found (Moreno & Osorio, 2008,
2012; Orlov, Aoustin, & Chevallereau, 2011; Polyakov & Poznyak,
2009). One can apply the STA to alleviate the chattering in systems
with relative degree two (see for example Fridman, 2011 and
references therein). It is natural in this case to select the sliding
variable as s = 6 + co,c > 0. With this choice of s, the STA
ensures the uncertainties/perturbations compensation, finite-time
convergence to the set s(t) = $(t) = 0, but the states o, and &
converge only asymptotically to the origin.

Arbitrary order sliding mode approaches (Bartolini et al., 1998;
Levant, 2003, 2005b) can also be used to attenuate the chattering
in the control of systems with relative degree two with respect to
o.Inorder to adjust the chattering and, at the same time generate a
continuous signal, one rises artificially the relative degree to three
by obtaining &, and uses third-order nested or quasi-continuous
SMC on the new control variable ii. This ensures the finite-time
convergence to the origin of o and 6 and compensates Lipschitz
perturbations. The disadvantage of this approach is that the values
of & are needed in order to realize third order SMC (Levant, 2003,
2005b). For systems with known control gain the knowledge of
¢ means the knowledge of the perturbations or uncertainties. In
this case the perturbations/uncertainties could be compensated
directly.

Therefore, the problem of designing a controller which is
continuous and, at the same time, ensures finite-time convergence
to the third-order sliding-mode, using only information about
o, 0, is an important task. The first results solving this problem
were obtained in Basin and Rodriguez-Ramirez (2014), Edwards
and Shtessel (2014), Moreno, Negrete, Torres-Gonzalez, and
Fridman (2015), Torres Gonzalez, Fridman, and Moreno (2015)
and Zamora, Moreno, and Kamal (2013), where a combination of
the super-twisting and twisting or continuous algorithms were
reported, ensuring finite-time convergence of o, ¢ to the origin.

The goal of this paper is to propose a homogeneous control
algorithm for uncertain second-order plants, having the following
advantages:

e it compensates Lipschitz uncertainties/perturbations;

e it provides finite-time convergence to third-order sliding-mode
set, and therefore provides sliding accuracy of order three with
respecttoo;

e it generates a continuous control signal;

e it requires only the knowledge of the output o and 4.

This algorithm can be considered as a combination of super-
twisting and terminal sliding-mode. This result has been
announced in Fridman, Moreno, Bandyopadhyay, Kamal, and Cha-
langa (2015, Section 5.2) as Continuous Nonsingular Terminal Slid-
ing Mode Algorithm, but without providing a convergence proof,
which is the main contribution of the present paper.

In this light we denote the proposed controller as Continuous
Terminal Sliding Mode (CTSM) Controller. To prove the finite-time
convergence and robustness properties of the CTSM algorithm
we use a continuously-differentiable, homogeneous and strict
Lyapunov function.

1.1. Notation and definitions

In this paper the following notation is used: [z |? = |z|Psign(z)

where z € Rand p € R. Therefore [z]?> = |z|?sign(z) # Z°.
Note that, if p is an odd number, the two expressions |z]? = zP
are equivalent. In particular, [z]° = sign(z), [z)%z]P = [z]P,

[z]Pz]7 = |z|P*4.

Homogeneous functions and systems have appealing properties
and they play an important role in HOSM and in this paper.
Classical homogeneity corresponds to the scaling property of a
scalar function f (kx) = k’f (x), forallk > 0 and some § € R.From

Baccioti and Rosier (2005) we recall some definitions of (weighted)
homogeneous functions and vector fields and, from Levant (2005a)
and Orlov (2003), the corresponding concepts for vector-set fields.
A function f : R" — R (or a multivalued function F : R" = R,
F(x) C R) is called homogeneous of degree § with the dilation
di : (X1, X2, ..., Xn) = (K"xq, K2x5, ..., k"x,), wherery, ..., m
are some positive numbers (called weights) if, for any k > 0, the
identity f (dyx) = k*f (x) holds (respectively, F (dix) = k°F (x)).

A vector field f : R" — R" (or a vector-set field F : R" = R",
F (x) C R")ishomogeneous of degree § if forany k > 0 the identity
f (dix) = KPdif (x) holds (respectively, F (dix) = k2diF (x)). If a
vector field has homogeneity degree § # 0, then it can be always
scaled to =1 by an appropriate proportional change of the weights
iy ..., Iy

2. Problem statement and main result

We consider a perturbed second-order plant described as

)'(1:)(2
k2:u+ﬂ(t)v

where x1, x, € R are the states, u € R is the control and u (t)
is the perturbation, which is a Lipschitz continuous time signal
with Lipschitz constant A, i.e. |t (t)] < A almost everywhere. The
problem is to design a (time) continuous control law such that the
output o = x; and its derivative 6 = x, converge in finite time
and remain in zero 0 = ¢ = 0 despite of the perturbation wu (t).
Moreover, after a finite time the control should compensate for the
perturbation, i.e. u(t) = —u(t), so that & = 0 also, establishing a
third order sliding mode.
The problem is solved by the dynamic feedback control law

(1)

u= —k1L% [ (x1, Xz)J% +z

. 0 (2)
Z = —kL[py (X1, %2)]",
where
o 3
oL (x1, %) = X1 + LT|—X2J2, (3)
2

is a continuously differentiable function of the state. In turn, the
parameters k; and L are positive gains to be designed. When L = 1
we denote ¢ (xq, Xp) simply as ¢ (x1, ;). By defining x3 2 z +
u, the closed loop (1)-(2) yields the (discontinuous) 3rd-order
differential equation

X1 =X
X, = —le% [P (x1, Xz)J% + X3 (4)
X3 = koLl (x1,%2) [ + 1 (1) .

Since the right hand side of (4) is discontinuous, its solutions will be
understood in the sense of Filippov (Filippov, 1988). Notice that the
Filippov differential inclusion corresponding to the discontinuous
and uncertain system (4) is homogeneous of degree (scaled to)
8 = —1 and has weights r = [3, 2, 1].

In the main result of the paper (Theorem 1 below) we will use
the following definition (Levant, 2005a): The origin x = 0 of a
differential inclusion x € F(x) (a differential equation x = f(x))
is called globally uniformly finite-time stable if it is Lyapunov stable
and, for any R > 0, there exists T > 0 such that any trajectory with
initial condition ||xg|| < R reaches 0 at time T and x(t) = O for all
t>T.

Theorem 1. Consider the third-order system (4) with a uniformly
bounded signal |[ (t) | < A. Then, for every A > 0 and o > 0, there
exist (positive) values of the gains (ky, ky, L) such that the state x
converges to zero globally, uniformly and in finite-time, despite any
bounded perturbation | (t) | < A.
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