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a b s t r a c t

In this paper we study the scalar linear quadratic differential game with state feedback information
structure. Using a geometric approach, we present a complete characterization when this game will
have no, one or multiple equilibria. Furthermore, we investigate the effect on this solution structure of
some characteristics of the game, i.e., the number of players; the entrance of new players; the level of
asymmetry; and the impact entrance of an additional player has on the closed-loop stability of the game.
For that purpose we distinguish three types of the game: the economic game; the regulator game and the
mixed game. The analysis is restricted to the case the involved cost depend only on the state and control
variables.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, there is an increased interest in studying
diverse problems in economics and engineering using dynamic
games. In particular, in environmental economics and macroeco-
nomic policy coordination, dynamic games are a natural frame-
work to model policy coordination problems (see e.g. the books
and references in Dockner, Jørgensen, Van Long, and Sorger (2000),
Grass, Caulkins, Feichtinger, Tragler, and Behrens (2008), Jør-
gensen and Zaccour (2003) and Plasmans, Engwerda, van Aarle,
Di Bartolomeo, and Michalak (2006)). In engineering, the theory
is used to model problems in, e.g., finance, robust optimal con-
trol and pursuit-evasion problems. Particularly in the area of ro-
bust optimal control, the theory of linear quadratic differential
games has been extensively developed (see, e.g., Başar & Bernhard,
1995; Engwerda, 2005; Kun, 2001; Mukaidani, 2009). In engineer-
ing, using this framework, applications are reported from diverse
areas: robot control formation (Gu, 2006); interconnection of elec-
tric power systems (Mukaidani, 2009); multipath routing in com-
munication networks (Altman & Başar, 1998; Lin, Wang, Zhou, &
Miao, 2010); solving mixed H2/H∞ control problems (Limebeer,
Anderson, & Hendel, 1994); military operations of autonomous ve-
hicles (Li & Cruz, 2011).

✩ The material in this paper was partially presented at the 13th Viennese
Workshop on Optimal Control and Dynamic Games, May 13–16, 2015, Vienna,
Austria. This paper was recommended for publication in revised form by Associate
Editor Akira Kojima under the direction of Editor Ian R. Petersen.

E-mail address: engwerda@uvt.nl.

In linear quadratic differential games, the environment is
modeled by a set of linear differential equations and the objectives
are modeled using quadratic functions. Assuming that players
do not cooperate and look for linear feedback strategies which
lead to a worse performance if they unilaterally deviate from it,
leads to the study of so-called linear feedback Nash equilibria
(FNE). The resulting equilibrium strategies have the important
property that they are strong time consistent. A property which,
e.g., does not hold under an open-loop information structure (see,
e.g., Başar & Olsder, 1999, chap. 6.5). Under a feedback information
structure also nonlinear strategies may occur. However, in many
applications there is a preference for the use of linear FNE
strategies. For that reason we just consider linear FNE strategies
in this paper.

This problem has been considered by many authors and dates
back to the seminal work of Starr andHo (1969). For the fixed finite
planning horizon there exists at most one FNE (see, e.g., Lukes,
1971). For an infinite planning horizon, the affine-quadratic
differential game is solved in Engwerda and Salmah (2013). To
find the FNE in this game involves solving a set of coupled
algebraic Riccati-type equations (ARE). Only a few existence
results are known for some special cases of these equations (see,
e.g., Abou-Kandil, Freiling, Ionescu, & Jank, 2003; Engwerda, 2005;
Papavassilopoulos, Medanic, & Cruz, 1979). It has been shown (see,
e.g., Engwerda, 2005; Papavassilopoulos & Olsder, 1984) that the
number of equilibria can vary between zero and infinity. Clearly,
both from a computational point of view, and to have a better
understanding of the qualitative properties of this game, one
would like to characterize the number of equilibria as a function
of the model parameters. Particularly in the context of large
scale systems, it seems interesting to have parametric conditions
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under which this game has no, or, a unique equilibrium. Also, this
may be helpful in the assessment of calculating the cost/gains of
different information/cooperation structures (see, e.g., Başar&Zhu,
2011), or, in finding areas where approximate solutions of certain
nonlinear differential games exist (see, e.g., Mylvaganam, Sassano,
& Astolfi, 2015). For the most simple linear two-player scalar
case, where the performance criterion is a strict positive quadratic
function of both states and controls, such an analysis is performed
in Engwerda (2000a,b) and generalized in Engwerda (2005, chap.
8.4). There it is shown that this game can have zero up to three
different equilibria, and parametric conditions are provided for
each case. Here we extend this approach for the N-player case.
Section 2 recalls from Engwerda (2005) the basic model and
approach. In Section 3 we show under which conditions the game
will have either no, one, or multiple equilibria. Furthermore, as a
by-product of the approach, we point out the effect entrance/drop
out of players has on the closed-loop system stability if the game
has a unique equilibrium. The existence conditions provided in
Section 3 are primarily presented in geometric terms. Section 4
uses them to obtain analytic existence conditions in the symmetric
case and elaborates this case. Section 5, next, analysis in a two-
player context, how asymmetry between players affects the area
where a unique equilibrium exists. Finally, Section 6 reviews a
number of obtained results and indicates some directions for
future research. Proofs ofmost results are directed to theAppendix.

2. Preliminaries

In this paper we consider the problem where N players try to
minimize their performance criterion in a non-cooperative setting.
Eachplayer controls a different input in a single system. The system
is described by the following scalar differential equation

ẋ(t) = ax(t) +

N
i=1

biui(t), x(0) = x0. (1)

Here x is the state of the system, ui is the scalar variable player i can
manipulate, x0 is the arbitrarily chosen initial state of the system,
a (the state feedback parameter), bi, i ∈ N := {1, . . . ,N}, are
constant system parameters, and ẋ denotes the time derivative of
x. The aim of player i ∈ N is to minimize:

Ji(u1, . . . , uN) :=


∞

0
{qix2(t) + riu2

i (t)}dt. (2)

Here ri > 0 and both bi and qi differ from zero. So, player
i is not directly concerned about the control efforts player j
uses to manipulate the system. This assumption is crucial for
the analysis below. Players act non-cooperatively and use time
invariant feedback strategies, ui(t) = fix(t), to control the system.
This, on the understanding, they do not want to destabilize the
system. So, the set of strategies is restricted to

FN :=


(f1, . . . , fN) | a +

N
i=1

bifi < 0


.

This restriction is essential. Indeed, FNE exist in which a player can
improve unilaterally by choosing a feedback for which the closed-
loop system is unstable (see Mageirou, 1976). Any f ∈ F is called
stabilizing. A set of feedback strategies is called a Nash equilibrium
if none of the players can improve his performance by unilaterally
choosing a different strategywithin the setF .More formally, using
the notation f̄−i(fi) := (f̄1, . . . , f̄i−1, fi, f̄i+1, . . . , f̄N):

Definition 2.1. The N-tuple f̄ := (f̄1, . . . , f̄N) is called a set of
(linear stabilizing stationary) feedback Nash equilibrium strategies if,
for all i ∈ N, the following inequalities hold:

Ji(f̄ , x0) ≤ Ji(f̄−i(fi), x0),

for all initial states x0, and for all fi ∈ R such that f̄−i(fi) ∈ FN . �

Below we drop the adjectives linear, stabilizing and stationary in
the above definition and use the shorthand notation FNE to denote
the by these actions implied equilibrium cost, and the actions
themselves as FNE actions or strategies.

We can assume here, without loss of generality, that ri are
positive and both bi and qi differ from zero. For, in case ri ≤ 0,
the problem has no solution; and in case either bi = 0 or qi = 0,
the optimal control for player i is to use no control, i.e. ui(.) = 0, at
any point in time. So, in the last mentioned case, the player could
be discarded from the game. For this game we distinguish three
cases.

Definition 2.2. Game (1), (2) is called a regulator game if in (2)
qi > 0, i ∈ N; an economic game if in (2) qi < 0, i ∈ N; a mixed
game otherwise. �

The attached names are inspired by the fact that, in case qi > 0, i ∈

N, the game can be interpreted as a problem where all players like
to track the system’s state, x, as fast as possible to zero using as less
as possible control efforts, ui. Whereas in case qi < 0, i ∈ N, the
game can be interpreted as a game between players who all like
to maximize their profits (measured by the state variable x) using
their input (measured by ui) as efficient as possible.

The FNE for game (1), (2) are determinedby the solutions of a set

of coupled algebraic Riccati equations (ARE). With si :=
b2i
ri

these
equations in the variables ki reduce to (see, e.g., Engwerda, 2005):
a −

N
j=1

kjsj


ki + ki


a −

N
j=1

sjkj


+ qi + kisiki = 0,

i ∈ N. (3)

The precise statement is as follows:

Theorem 2.3. Game (1), (2) has a FNE if and only if (iff.) there exist N
scalars ki such that (3) holds and a −

N
j=1 sjkj < 0. If this condition

holds, the N-tuple (f̄1, . . . , f̄N) with f̄i := −r−1
i biki is a FNE and

Ji(f̄1, . . . , f̄N , x0) = kix20. �

So, to determine FNEwe have to find all stabilizing solutions of (3).
To find these solutions, following Engwerda (2005, Section 8.5.1),
we introduce next variables:

σi := siqi, yi := siki, i ∈ N, and

yN+1 := −acl := −


a −

N
j=1

yj


.

Note that, by relabeling the player indices, we can enforce that
σ1 ≥ · · · ≥ σN . This ordering is assumed to hold throughout.
Furthermore, since fi =

−1
bi
yi, there is a bijection between

(f1, . . . , fN) and (y1, . . . , yN). Using this notation, (3) can be
rewritten as

y2i − 2yN+1yi + σi = 0, i ∈ N. (4)

So, FNE exist iff. above N quadratic equations, and the equation

yN+1 = −a +

N
j=1

yj, (5)

have a real solution yi, i ∈ N, with yN+1 > 0. The solutions of (4)

are yi = yN+1 +


y2N+1 − σi and yi = yN+1 −


y2N+1 − σi, i ∈ N.

Substitution of this into (5) yields next result (see Appendix).
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