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a b s t r a c t

Global observability of continuous-time polynomial systems is studied. An algebraic necessary and
sufficient condition of global observability is proved. It is expressed with the aid of real radicals of ideals
in the ring of polynomials and is based on the real theorem of zeros from real algebraic geometry.
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1. Introduction

Global observability is one of the fundamental properties of
control systems. For analytic systems it is equivalent to injectivity
of a family of analytic functions defined on the state space of the
system (see Hermann & Krener, 1977). If the system is polynomial,
this family may be reduced to a finite one and the tools from
algebraic geometry may be used. In Kawano and Ohtsuka (2013)
and Tibken (2004) these tools were used to derive geometric
criteria of global observability of polynomial systems. In Kawano
and Ohtsuka (2013) also some sufficient algebraic conditions were
proposed. We follow these ideas in this paper making one step
further: we present necessary and sufficient algebraic conditions
of global observability and global observability at a particular point
for polynomial systems.

We draw on ideas and results of real algebraic geometry (see
e.g. Bochnak, Coste, & Roy, 1998). In particular the real theorem of
zeros (real Nullstellensatz) – a fundamental result of real algebraic
geometry – is used to prove themain results of this paper. Themain
concept that appears in the study is the real radical of an ideal of
the ring of polynomials. It is different from ordinary radical, which
appears in Hilbert’s Nullstellensatz in complex algebraic geometry
(over the field of complex numbers). The ordinary radical was used
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in Kawano and Ohtsuka (2013) and Tibken (2004), but it is not a
proper tool in the analysis of the systems over real numbers. It is
harder to compute the real radical than the ordinary radical, butwe
provide several examples showing how to check the conditions of
observability in which real radicals appear. We also comment on
algorithms of computing real radicals.

Real radicals were already successfully used in characterizing
local and stable (robust) local observability of analytic continuous-
time and discrete-time systems (see Bartosiewicz, 1995, 1998,
1999). These results have been recently extended to systems
on time scales in Bartosiewicz (2013), which encompass both
continuous-time and discrete-time systems. The present paper
may be seen as a passage from local to global problems, where the
same tools are used. The main difference concerns the rings that
appear in these two areas. In local observability the ring of germs
of analytic functions was used, while for global observability we
exploit the ring of global polynomial functions.

2. Global observability

Let us consider a control system with output, denoted byΣ:

x′(t) = f (x(t), u(t))
y(t) = h(x(t)), (1)

where t ∈ R, x(t) ∈ Rn, u(t) ∈ Ω — an arbitrary set (the
set of control values), y(t) ∈ Rp. We assume that for every
ω ∈ Ω , fω defined by fω(x) := f (x, ω) is a polynomial vector
field on Rn. It may be identified with a map from Rn to Rn with
polynomial components. Similarly h is assumed to be a polynomial
map. Moreover, we assume that controls are piecewise constant
functions from [0,+∞) intoΩ .
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Let x(t, x0, u) denote the solution of (1) satisfying x(0) = x0,
corresponding to control u and evaluated at t ≥ 0. Let x1, x2 ∈ Rn.
Then x1 and x2 are called indistinguishable if

h(x(t, x1, u)) = h(x(t, x2, u))

for every control u and for every t ≥ 0 for which both sides of the
equation are defined. Otherwise x1 and x2 are distinguishable.

Let us recall the definitions of the basic concepts.
System Σ is globally observable at point x0 ∈ Rn iff for any

x ∈ Rn different from x0, x0 and x are distinguishable.
System Σ is globally observable iff it is globally observable at

every point x0 ∈ Rn. In otherwords, systemΣ is globally observable
iff every two distinct states in Rn are distinguishable.

Remark 1. There are many different concepts of observability for
nonlinear systems. For example, complete uniform observability, a
stronger concept than global observability, is used in Gauthier,
Hammouri, and Othman (1992) to construct an observer. Global
observability studied here is a classic system-theoretic concept,
used for example in studies on minimal realizations. It implies
possibility of reconstruction of the state from the output. Since no
rank condition is involved, the function that assigns the initial state
to the output trajectorymayhave lower regularity than the system.

Let ϕ : Rn
→ R be polynomial and g be a polynomial vector field

on Rn. Then Lgϕ := ∇ϕ · g denotes the Lie derivative of ϕ with
respect to g . Observe that Lgϕ is again a polynomial function.

LetH(Σ)denote the set of all functions of the form Lfωk . . . Lfω1 hi

for i = 1, . . . , p, k ≥ 0 and ωj ∈ Ω for j = 1, . . . , k, where for
k = 0 such a function is just hi.

Theorem 2 (Hermann & Krener, 1977). The points x1 and x2 are
indistinguishable if and only if ϕ(x1) = ϕ(x2) for all ϕ ∈ H(Σ).

Corollary 3. SystemΣ is globally observable at x0 iff for every x ∈ Rn

different from x0 there is ϕ ∈ H(Σ) s.t. ϕ(x0) ≠ ϕ(x).
System Σ is globally observable iff for every distinct x1, x2 ∈ Rn

there is ϕ ∈ H(Σ) s.t. ϕ(x1) ≠ ϕ(x2).

3. Geometric characterization

Werecall here geometric characterizations of global observabil-
ity. These characterizations will allow us to pass to algebraic crite-
ria. They were proved earlier in Kawano and Ohtsuka (2013).

For a set G of real polynomial functions on Rn let us define the
zero-set of G by

Z(G) := {x ∈ Rn
: ϕ(x) = 0 for every ϕ ∈ G}.

Let us first establish a geometric characterization of global
observability at a point.

Let us fix x0 ∈ Rn and denote by H(Σ)x0 a family of polynomial
functions on Rn of the form ϕ−ϕ(x0), where ϕ ∈ H(Σ). Note that
all functions from H(Σ)x0 vanish at x0.

Proposition 4. Σ is globally observable at x0 if and only if
Z(H(Σ)x0) = {x0}.

Let I(Σ)x0 denote the ideal of the ring of polynomialsR[x1, . . . , xn]
=: R[x] generated by H(Σ)x0 . It consists of polynomials of the
form α1ϕ1 + · · · + αkϕk, where k ∈ N, α1, . . . , αk ∈ R[x] and
ϕ1, . . . , ϕk ∈ H(Σ)x0 . Observe that all polynomials from this ideal
vanish at x0 and H(Σ)x0 ⊂ I(Σ)x0 .

Corollary 5. Σ is globally observable at x0 if and only if Z(I(Σ)x0) =

{x0}.

Remark 6. In general the set of functions H(Σ)x0 is infinite, but
the ideal I(Σ)x0 generated by H(Σ)x0 is finitely generated. This
follows from the Hilbert basis theorem (Atiyah & Macdonald,
1969). Moreover, one can show that the generators of the ideal
could be taken from the set H(Σ)x0 . However the number of these
generators cannot be easily deduced from the system.

The observation ideal of system Σ is the ideal I(Σ) of the ring
R[x, z] := R[x1, . . . , xn, z1, . . . , zn] generated by functions ϕ(x)−
ϕ(z), where ϕ ∈ H(Σ).

Let Dn denote the diagonal of R2n, i.e. Dn = {(x, x) ∈ Rn
× Rn

:

x ∈ Rn
}.

The following fact follows directly from the definition:

Proposition 7. Z(I(Σ)) ⊇ Dn.

Let us state now a geometric characterization of global observabil-
ity.

Proposition 8. Σ is globally observable iff Z(I(Σ)) = Dn.

4. Algebraic criteria

Let I be an ideal of a commutative ringR. The radicalof I , denoted
by

√
I , is the set of all a ∈ R such that for some k ∈ N, ak ∈ I . The

real radical of I , denoted by R√I , is the set of all a ∈ R for which
there arem ∈ N, k ∈ N and b1, . . . , bk ∈ R such that

a2m + b21 + · · · + b2k ∈ I.

Proposition 9. The real radical has the following properties:
1. The real radical of I is an ideal of R.
2. I ⊆

√
I ⊆

R√I .
3. If I is proper, then R√I is proper.
4. If I ⊆ J , then R√I ⊆

R
√
J .

Proof. See e.g. Bochnak et al. (1998).

Example 10. Let R = R[x1, x2] and I = ((x21 + x22)
2) — the ideal

generated by (x21 + x22)
2. It is easy to see that

√
I = (x21 + x22). Since

x41 + 2(x1x2)2 + x42 ∈ I , then x1, x2 ∈
R√I . Thus R√I = (x1, x2),

because (x1, x2) is a maximal ideal.

For a subset A of Rn let I(A) denote the zero-ideal of A. It is the set
of all ϕ ∈ R[x] such that ϕ(x) = 0 for all x ∈ A. It is easy to see that
I(A) is an ideal of the ring R[x].

Proposition 11. Let I be an ideal of R[x] and A be a subset of Rn.
Then
1. Z(I(A)) ⊇ A,
2. Z(I(Z(I))) = Z(I),
3. I(Z(I)) ⊇ I ,
4. I(Z(I(A))) = I(A).

Proof. See e.g. Bochnak et al. (1998).

The following theorem is one of the fundamental facts of real
algebraic geometry (see e.g. Bochnak et al., 1998). It will help us
to transfer the geometric characterization of observability to an
algebraic one.

Theorem 12 (Real Nullstellensatz). Let I be an ideal of R[x1, . . . , xn].
Then I(Z(I)) =

R√I .

Example 13. Let R = R[x1, x2] and I = ((x21 + x22)
2). Then Z(I) =

{(0, 0)} and I(Z(I)) = (x1, x2). It coincides with R√I computed in
Example 10.
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