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a b s t r a c t

In this paper, we consider the problem of identifying a linear map frommeasurements which are subject
to intermittent and arbitrarily large errors. This is a fundamental problem in many estimation-related
applications such as fault detection, state estimation in lossy networks, hybrid system identification,
robust estimation, etc. The problem is hard because it exhibits some intrinsic combinatorial features.
Therefore, obtaining an effective solution necessitates relaxations that are both solvable at a reasonable
cost and effective in the sense that they can return the true parameter vector. The current paper discusses
a nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it
is shown that under appropriate conditions on the data, an exact estimate can be recovered from data
corrupted by a large (even infinite) number of gross errors.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Problem and motivations

We consider a linear measurement model of the form

yt = x⊤

t θ° + ft + et (1)

where yt ∈ R is the measured signal, xt ∈ Rn the regression
vector, {et} a sequence of zero-mean and bounded errors (e.g.,
measurement noise, model mismatch, uncertainties, etc.) and {ft}
a sequence of intermittent and arbitrarily large errors. Assume that
we observe the sequences {xt}Nt=1 and {yt}Nt=1 and would like to
compute the parameter vector θ° from these observations. We are
interested in doing so without knowing any of the sequences {ft}
and {et}. We do however make the following assumptions:

• {et} is a bounded sequence.
• {ft} is a sequence containing zeros and intermittent gross errors

with (possibly) arbitrarily large magnitudes.
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This is an important estimation problem arising inmany situations
such as fault detection (Chen, Bako, & Lecoeuche, 2011; Ozay &
Sznaier, 2011), hybrid system identification (Garulli, Paoletti, &
Vicino, 2012), subspace clustering (Bako, 2014; Vidal, 2010), error
correction in communication networks (Candès & Randall, 2006).
The case when {ft} is zero and {et} is a Gaussian process has been
well-studied in linear system identification theory (see, e.g., the
text books Ljung, 1999; Soderstrom & Stoica, 1989). A less studied,
but very relevant scenario in the system identification community,
is when the additional perturbation {ft} in (1) is nonzero and
contains intermittent and arbitrarily large errors (Candès &
Randall, 2006; Mitra, Veeraraghavan, & Chellappa, 2013; Sharon,
Wright, & Ma, 2009; Xu, Bai, & Cho, 2014). It is worth noticing the
difference with the problem studied in the field of compressive
sensing (Candès & Randall, 2006; Candès & Wakin, 2008; Donoho,
2006). In compressive sensing, the sought parameter vector is
assumed sparse and the measurement noise {et}, often Gaussian
or bounded. Here, no assumptions are made concerning sparsity
of θ°. We will, in this contribution, study essentially the case when
the data is noise-free (i.e., et = 0 for all t) and {ft} is a sequencewith
intermittent gross errors. We will derive conditions for perfect
recovery and point to effective algorithms for computing θ°. In
the second part of the paper, the model assumption is relaxed to
allow both et and ft to be simultaneously nonzero. Note that this
might be a more realistic scenario since most applications have
measurement noise.

For illustrative purposes, let us discuss briefly some applica-
tions where a model of the form (1) is of interest.
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Switched linear system identification. A discrete-time Multi-
Input Single-Output (MISO) Switched Linear System (SLS) can be
written in the form

yt = x⊤

t θ o
σt

+ et , (2)

where xt ∈ Rn is the regressor at time t ∈ Z+ defined by

xt =

yt−1 · · · yt−na u⊤

t u⊤

t−1 · · · u⊤

t−nb

⊤
, (3)

where ut ∈ Rnu and yt ∈ R denote respectively the input and
the output of the system. The integers na and nb in (3) are the
maximum output and input lags (also called the orders of the
system). σt ∈ {1, . . . , s} is the discrete mode (or discrete state)
indexing the active subsystem at time t; it is in general assumed
unobserved. θ o

σt
∈ Rn, n = na + nbnu, is the parameter vector (PV)

associated with the mode σt . For θ° ∈

θ1°, . . . , θ

o
s


, the Switched

Auto-Regressive eXogenous (SARX) model (2) can be written in
the form (1), with unknown ft of the following structure ft =

x⊤
t (θ o

σt
−θ o). For a background on hybrid system identification, we

refer to the references (Bako, 2011; Garulli et al., 2012; Maruta &
Sugie, 2011; Ohlsson & Ljung, 2013; Ozay, Sznaier, Lagoa, & Camps,
2012; Paoletti, Juloski, Ferrari-Trecate, & Vidal, 2007; Vidal, Soatto,
Ma, & Sastry, 2003).
Identification from faulty data. Amodel of the form (1) also arises
when one has to identify a linear dynamic system which is subject
to intermittent sensor faults. This is the case in general when the
data are transmitted over a communication network (Candès &
Randall, 2006; Ozay & Sznaier, 2011). Model (1) is suitable for
such situations and the sequence {ft} then models occasional data
packets losses or potential outliers. More precisely, a dynamic
MISO systemwith process faults can be directlywritten in the form
(1). In the case of sensor faults, the faulty model might be defined
by
ȳt = x̄⊤

t θ° + et
yt = ȳt + wt

where yt ∈ R is the observed output which is affected by the fault
wt (assumed to be nonzero only occasionally) ; x̄t is defined as
in (3) from the known input ut and the unobserved output ȳt . We
can rewrite the faulty model exactly in the form (1) with ft =

wt −

wt−1 · · · wt−na


θ°. Sparsity of {wt} induces sparsity of

{ft} but in a lesser extent.
State estimation in the presence of intermittent errors. Con-
sidering a MISO dynamic system with state dynamics described
by zt+1 = Azt + But and observation equation ỹt = C⊤zt + ft ,
(A, B, C) being knownmatrices of appropriate dimensions, and {ft}
a sparse sequence of possibly very large errors, the finite horizon
state estimation problem reduces to the estimation of the initial
state z0 = θ . We get a model of the form (1) by setting yt =

ỹt − C⊤∆t ūt and xt = (At)⊤C , with ∆t =

At−1B · · · AB B


,

ūt =

u⊤

0 · · · u⊤

t−1

⊤. Examples of relevant works are those re-
ported in Bako and Lecoeuche (2013), Fawzi, Tabuada, and Diggavi
(2014). In this latter application, it can however be noted that the
dataset {xt} may not be generic enough.2

Connection to robust statistics. Indeed, the problemof identifying
the parameters frommodel (1) under the announced assumptions
can be viewed as a robust regression problem where the nonzero
elements in the sequence {ft} are termed outliers. As such, it

2 In this paper, the term genericity for a dataset characterizes a notion of linear
independence. For example, a set of N > n data points in general linear position
in Rn is more generic than a set of data points contained in one subspace. We
will introduce different quantitative measures of data genericity in the sequel (see
Definition 2 and Theorem 11).

has received a lot of attention in the robust statistics literature
(see, e.g., Huber & Ronchetti, 2009; Maronna, Martin, & Yohai,
2006; Rousseeuw & Leroy, 2005 for an overview). Examples
of methods to tackle the robust estimation problem include
the least absolute deviation (Huber, 1987), the least median of
squares (Rousseeuw, 1984), the least trimmed squares (Rousseeuw
& Leroy, 2005), the M-estimator (Huber & Ronchetti, 2009), etc.
Most of these estimators come with an analysis in terms of the
breakdown point (Hampel, 1971; Seber & Lee, 2003), a measure
of the (asymptotic) minimum proportion of points which cause an
estimator to be unbounded if they were to be arbitrarily corrupted
by gross errors. The current report focuses on the analysis of
a nonsmooth convex optimization approach which includes the
least absolute deviationmethod as a particular case corresponding
to the situation when the output in (1) is a scalar. The analysis
approach taken in the current paper is different in the following
sense.

• In robust statistics the quality of an estimator ismeasured by its
breakdown point. The higher the breakdown point, the better.
The available analysis is therefore directed to determining a
sort of absolute robustness: how many outliers (expressed in
proportion of the total number of samples) cause the estimator
to become unbounded.

• Here, the question of robust performance of the estimator
is posed differently. We are interested in estimating the
maximum number of outliers that a nonsmooth-optimization-
based estimator can accommodate while still returning the
exact value one would obtain in the absence of any outlier.
This is more related to the traditional view developed in
compressive sensing.

Contributions of this paper. One promisingmethod for estimating
model (1) is by nonsmooth convex optimization as suggested
in Candès and Randall (2006), Sharon et al. (2009), Bako (2011),
Mitra et al. (2013) and Xu et al. (2014). More precisely, inspired by
the recent theory of compressed sensing (Candès & Randall, 2006;
Candès & Wakin, 2008; Donoho, 2006), the idea is to minimize
a nonsmooth (and non differentiable) sum-of-norms objective
function involving the fitting errors. Under noise-free assumption,
such a cost function has the nice property that it is able to provide
the true parameter vector in the presence of arbitrarily large errors
{ft} provided that the number of nonzero errors is small in some
sense. Of course, when the data are corrupted simultaneously by
the noise {et} and the gross errors {ft}, the recovery cannot be
exact any more. It is however expected (as Proposition 17 and
simulations tend to suggest) that the estimate will still be close to
the true one.

The current paper intends to present a new analysis of the
nonsmooth optimization approach and provide some elements
for further understanding its behavior. The line of analysis goes
from a full characterization of the nonsmooth optimization based
estimator (both for SISO and MIMO systems) to the study of
robustness to outliers including in the presence of dense noise.
With respect to relevant works (Bako, 2011; Candès & Randall,
2006; Mitra et al., 2013; Sharon et al., 2009; Xu et al., 2014),
we derive new bounds on the number of outliers (in the least
favorable situations) that the estimator is capable to accommodate.
It is emphasized that a quite broad spectrum of such bounds can
be derived based on the basic characterization of the nonsmooth
identifier. Note however that evaluating numerically the tightest
of these bounds is a high computational process while less
tight bounds have a more affordable complexity. Some of the
bounds developed in this contributionmeet both relative tightness
requirement and computability in polynomial time (see the bound
based on ξ(X) in Theorem 11). Finally, the paper show how
the results derived in the first part for ℓ1-norm estimator when



Download English Version:

https://daneshyari.com/en/article/7109491

Download Persian Version:

https://daneshyari.com/article/7109491

Daneshyari.com

https://daneshyari.com/en/article/7109491
https://daneshyari.com/article/7109491
https://daneshyari.com

