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a b s t r a c t

Errors-in-variables (EIV) identification refers to the problem of consistently estimating linear dynamic
systemswhose output and input variables are affected by additive noise. Various solutions have been pre-
sented for identifying such systems. In this study, EIV identification using Structural Equation Modeling
(SEM) is considered. Two schemes for how EIV Single-Input Single-Output (SISO) systems can be formu-
lated as SEMs are presented. The proposed formulations allow for quick implementation using standard
SEM software. By simulation examples, it is shown that compared to existing procedures, here repre-
sented by the covariance matching (CM) approach, SEM-based estimation provide parameter estimates
of similar quality.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Several estimation methods have been proposed for identify-
ing linear dynamic systems fromnoise-corrupted outputmeasure-
ments, see for instance Ljung (1999) and Söderström and Stoica
(1989). On the other hand, estimation of the parameters of sys-
tems in which the input signal is also affected by noise, here re-
ferred to as ‘‘errors-in-variables’’ (EIV) models, is recognized as a
more delicate problem. Studying such systems is of interest due to
their potential usage in the engineering sciences and elsewhere.

Established techniques for handling the EIV problem in-
clude the bias-eliminating least squares (Zheng, 1998, 2002), the
Frisch estimator (Beghelli, Castaldi, Guidorzi, & Soverini, 1993;
Beghelli, Guidorzi, & Soverini, 1990; Diversi & Guidorzi, 2012;
Diversi, Guidorzi, & Soverini, 2003, 2004, 2006; Guidorzi, Di-
versi, & Soverini, 2008; Söderström, 2008) and various forms of
bias-compensated least squares (Ekman, 2005; Ekman, Hong, &
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Söderström, 2006;Mahata, 2007). An overview of EIV system iden-
tification, containing various solutions from the literature, can be
found in Söderström (1981, 2007, 2012). The topic is also treated
from different points of view in the books (Cheng & Van Ness,
1999; Fuller, 2006). A more recent development is represented
by the covariance matching (CM) approach introduced in Moss-
berg and Söderström (2011), Söderström and Mossberg (2011)
and Söderström,Mossberg, and Hong (2009). Mossberg and Söder-
ström (2012) and Söderström, Kreiberg, andMossberg (2014). This
approach has been shown to be related to structural equation
modeling (SEM) techniques. In Kreiberg, Söderström, and Yang-
Wallentin (2013), it is demonstrated how SEM can be applied to
the problem of EIV system identification.

The objective of the present study is to further extend and re-
fine the SEM approach. As compared to Kreiberg et al. (2013), we
provide a more thorough analysis of how SEM can be applied to
the EIV problem. Two different and quite general formulations of
the EIV system as SEMs are presented, and their relation is ana-
lyzed. To facilitate the SEM implementation of such systems, sev-
eral extensions of the standard SEM framework are proposed. The
suggested formulations are evaluated in terms of statistical andnu-
merical performance using simulated data. Aspects concerning the
implementation, which were only briefly considered in Kreiberg
et al. (2013), are studied inmore detail. In the simulation examples,
standard software developed for SEM-based estimation is used.

The study is organized as follows. First, in Section 2, we outline
the background of the EIV problem. In Section 3, the standard
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Fig. 1. Basic setup for the dynamic EIV problem.

SEM framework for static systems is reviewed. In Section 4,
it is shown how EIV systems can be formulated as SEMs, and
in Section 5, simulation examples of the two formulations are
presented. Finally, in Section 6, concluding remarks are given.

2. EIV system formulation

First, we define the signals entering the system and then
describe the general EIV problem for linear dynamic systems. The
usual setup of the EIV problem is illustrated in Fig. 1.

Our interest lies in the linear Single-Input Single-Output (SISO)
system described by

A(q−1)y0(t) = B(q−1)u0(t), (1)
where y0(t) and u0(t) are the noise-free output and input signals,
respectively, and A(q−1) and B(q−1) are polynomials in the
backward shift operator q−1 of the form

A(q−1) = 1 + a1q−1
+ · · · + anaq

−na , (2)

B(q−1) = b1q−1
+ · · · + bnbq

−nb . (3)

We allow the noise-free signals to be corrupted by additive
measurement noises ỹ(t) and ũ(t). The available signals are in
discrete time and are given by

y(t) = y0(t)+ ỹ(t), (4)
u(t) = u0(t)+ ũ(t). (5)

Since y0(t) and u0(t) are not directly observable, the signals are
considered latent.

The assumptions related to the system and its components are
as follows:
A1. All signals and disturbances are zero mean stationary

processes.
A2. The polynomials A(q−1) and B(q−1) are coprime and their

respective degrees na and nb are known.
A3. Data records of the noisy output and input signals

{y(t), u(t)}Nt=1 are known.
A4. The noise-free input u0(t) is unknown as well as its second

order properties such as its spectrum φu0(ω).
A5. Themeasurement noises ỹ(t) and ũ(t) arewhite andmutually

uncorrelated. Moreover, ỹ(t) and ũ(t) are both uncorrelated
with u0(t − τ) for all τ . Their unknown variances are denoted
ψỹ and ψũ.

Our concern is to determine the system transfer function
described by

G(q−1) =
B(q−1)

A(q−1)
=

b1q−1
+ · · · + bnbq

−nb

1 + a1q−1 + · · · + anaq−na
. (6)

It follows that the parameter vector to be estimated from the noisy
data is

θ0 =


a1 · · · ana b1 · · · bnb

T
, (7)

where the superscript T denotes the transpose. It may also be
of interest to determine other system characteristics such as the
measurement noise variances ψ0 = (ψỹ ψũ)

T .

3. Structural equation modeling

In multivariate statistics, SEM is a well established statistical
technique which has become popular within many disciplines
of social science research. The popularity of SEM stems from its
versatility, inwhich estimation problems involving latent variables
and measurement errors can be handled. The versatility is also
seen from the fact that numerous types of statistical problems can
be formulated within the SEM framework. In what follows, we
only briefly summarize the basics of SEM. For a more thorough
introduction, see Bartholomew, Knott, and Moustaki (2011) and
Bollen (1989).

3.1. Model formulation

The basic framework of SEM is described by the following three
equations

η = Bη+ 0ξ + δ, (8)
x1 = 31η+ ϵ1, (9)

x2 = 32ξ + ϵ2. (10)

The first equation is referred to as the structural equation, while the
latter two equations are known as themeasurement equations. The
randomvectorsη and ξ consist of unobserved (or latent) quantities,
whereas the vectors x1 and x2 consist of observed quantities.

The structural equation describes the relationship among the
latent quantities, wherein η is endogenous and ξ is exogenous. The
parameter matrices B and 0 consist of elements that represent the
effect of η on η and ξ on η, respectively. It is assumed that I − B is
nonsingular such that η can be uniquely determined by ξ and the
noise vector δ. It is further assumed that δ has expectation zero and
is mutually uncorrelated with ξ.

The measurement equations describe how the observed
quantities depend on the latent quantities. The parametermatrices
31 and 32 are so-called loading matrices whose elements
represent the effect of η on x1 and ξ on x2, respectively. The
measurement noises ϵ1 and ϵ2 may or may not be correlated, but
are assumed to be mutually uncorrelated with η, ξ and δ. Note
that the measurement equations are modeling devices in their
own right.When ameasurement equation is implementedwithout
considering the remaining equations, the model is referred to as
a Confirmatory Factor Analysis (CFA) model. Additional details are
given in Bartholomew et al. (2011) and Bollen (1989).

The dimensions of the parameter matrices in (8)–(10) follow
from the dimensions of the random vectors. Let nη , nξ , nx1 and nx2
denote the number of elements in η, ξ, x1 and x2, respectively. The
dimensions are then given by

B

nη × nη


, 0


nη × nξ


, (11)

31

nx1 × nη


, 32


nx2 × nξ


. (12)

The model framework additionally include the following covari-
ance matrices

E

ξξT


= 8, E


δδT


= 9δ, (13)

E

ϵ1ϵ

T
1


= 9ϵ1 , E


ϵ2ϵ

T
2


= 9ϵ2 , (14)

where E is the expectation operator. The dimensions of the
matrices in (13) and (14) follow immediately from the dimensions
of the involved vectors. Depending on the noise structure, 9δ , 9ϵ1
and9ϵ2 may or may not be diagonal.

The elements of B, 0, 31, 32, 8, 9δ , 9ϵ1 and 9ϵ2 are either
free or constrained. An element is said to be constrained if it
is assigned a specific value, or if it is a function (linear or non-
linear) of other elements. In SEM, it is common to constrain a large
number of elements to zero. An example is when any or all of the
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