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a b s t r a c t

In this paper, we design, in a systematic way, an infinite-dimensional disturbance estimator by the active
disturbance rejection control approach. The proposed disturbance estimator can be used to extract real
signal from corrupted velocity signal. Its variant form can also be served as a tracking differentiator.
The result is applied to stabilization for a multi-dimensional wave equation with position and corrupted
velocity measurements.
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1. Introduction

Many control approaches initially for lumped parameter
systems have been developed to cope with systems with
uncertainty coming from un-modeled dynamics and external
disturbance. These include the internal model principle for output
regulation to deal with some class of external disturbances; the
robust control for systems with uncertainties; the sliding mode
control for system with internal and/or external disturbance; and
the adaptive control for systems with unknown parameters, to
name just a few. These methods have also been generalized to the
distributed parameter systems. Examples can be found in Cheng,
Radisavljevic, and Su (2011), Guo and Jin (2013), Orlov (2000) and
Pisano and Orlov (2012) by the sliding mode control; Immonen
and Pohjolainen (2006) and Rebarber and Weiss (2003) by the
output regulation; and Krstic (2010) and Krstic and Smyshlyaev
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(2008) by the adaptive control, where the backstepping approach
plays an important role. Recently, the adaptive control is proposed
within the backstepping approach to deal with the anti-stable
one-dimensional wave equation in Bresch-Pietri and Krstic (2014)
and Krstic (2010) where the unknown parameter is estimated by
employing parameter projection, and a stabilizer is designed based
on the passivity principle. Actually, there are many works based
on passivity principle in the study of stabilization for PDEs, see
Kugi, Schlacher, and Irschik (1999), Lasiecka and Triggiani (2000),
Meurer and Kugi (2011), Ortega, van der Schaft, Maschke, and
Escobar (2002) and Tucsnak and Weiss (2009) and the references
therein.

The active disturbance rejection control (ADRC), as an uncon-
ventional design strategy similar to the external model principle
(Medvedev & Hillerström, 1995), was first proposed by Han in
1998, forwhich anice survey canbe found inHan (2009). One of the
remarkable features of ADRC is that the disturbance is estimated in
real time through an extended state observer (Guo & Zhao, 2011)
and is compensated (canceled) in feedback loop which makes the
control energy significantly reduced (Zheng & Gao, 2012). The gen-
eralization of ADRC to the systems described by PDEs is first for
one-dimensional systems in our previous works (Feng & Li, 2013;
Guo& Jin, 2013) and then formulti-dimensional system in Guo and
Zhou (2014) where the disturbance is dealt with by ODEs reduced
from the associated PDE through some special test functions. Very
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recently, the result is developed to deal with one-dimensional PDE
with corrupted output in our work (Feng & Guo, 2014).

In this paper, we generalize the result of Feng and Guo (2014)
from a one-dimensional PDE to a class of multi-dimensional PDEs.
Our design is systematic. We first design, by the active distur-
bance rejection control approach, a relative independent infinite-
dimensional disturbance estimator to estimate the distributed
disturbance. This estimator is shown to be served as a tracking dif-
ferentiator in infinite-dimensional context. The disturbance is then
compensated in the feedback loop to stabilization for a class of sec-
ond order infinite-dimensional systems. The result is applied to a
multi-dimensional wave equation as a demonstration.

We proceed as follows. In Section 2, a parameterized infinite
dimensional system in Hilbert space is discussed. The convergence
with respect to parameter is developed. Section 3 is devoted
to a systematic design for disturbance estimator and distributed
tracking differentiator. In Section 4, a time-varying gain is
introduced to cope with the peaking phenomenon caused by
constant high gain. The application to stabilization for a multi-
dimensional wave equation with corrupted velocity output is
investigated in Section 5. Some concluding remarks are presented
in Section 6.

2. Preliminary

In this section, we present some preliminary results. Let U be
a Hilbert space and let Gi, i = 1, 2 be self-adjoint, strictly positive
operators in U . We first consider the following system:
ẇR(t) = −RG1wR(t)+ RvR(t),
v̇R(t) = −RG2wR(t)+ f (t), (1)

where R is a positive constant and f ∈ L2loc(0,∞;U). We consider
system (1) in the state Hilbert space H := D(G1/2

2 ) × U with the
inner product given by

⟨(f1, g1), (f2, g2)⟩H = ⟨G1/2
2 f1,G

1/2
2 f2⟩U

+ ⟨g1, g2⟩U , ∀ (fi, gi) ∈ H, i = 1, 2. (2)

System (1) can be written as an evolutionary equation in H :

d
dt
(wR(t), vR(t)) = AR(wR(t), vR(t))+ (0, f (t)), (3)

where AR : D(AR)(⊂ H) → H is defined by
AR(f , g) = (−RG1f + Rg,−RG2f ),∀(f , g) ∈ D(AR),

D(AR) = {(f , g)| f ∈ D(G2),−G1f + g ∈ D(G1/2
2 )}.

(4)

It is seen from (4) that the domain of operator AR is independent
of the parameter R.

Lemma 2.1. Suppose that the operators G1 and G2 are commutable,
self-adjoint, strictly positive in Hilbert space U. Then the operator
AR defined by (4) generates a C0-semigroup of contractions on H .
Therefore, for any initial state (wR(0), vR(0)) ∈ H , f ∈ L2loc(0,∞;

U), there exists a unique solution (wR, vR) ∈ C(0,∞; H) to (3),
and if f ∈ H1

loc(0,∞;U) or f ∈ L2loc(0,∞;D(G1/2
2 )) and (wR(0),

vR(0)) ∈ D(AR), then (wR, vR) ∈ C(0,∞;D(AR)) is a classical
solution.

Proof. For any (f , g) ∈ D(AR), since G1 and G2 are commutable
and hence G2G1 > 0,

Re⟨AR(f , g), (f , g)⟩
= Re⟨−RG1f + Rg,G2f ⟩U + Re⟨−RG2f , g⟩U
= −R ⟨G1f ,G2f ⟩U = −R⟨G2G1f , f ⟩U ≤ 0. (5)

So AR is dissipative in H . It is a trivial exercise that

A−1
R (f , g) =


−

1
R
G−1
2 g,

f − G1G−1
2 g

R


, ∀ (f , g) ∈ H .

By the Lumer–Phillips theorem (Pazy, 1983, Theorem 1.4.3), AR
generates a C0-semigroup of contractions on H . We only need to
mention the classical solution. Thanks to assumption on f (t), we
have (0, f ) ∈ H1

loc(0,∞; H) or (0, f ) ∈ L2loc(0,∞;D(AR)). By Pazy
(1983, Corollary 2.5, p.107 and Corollary 2.6, p.108), system (1)
admits a unique classical solution (w, v) ∈ C(0,∞;D(AR)). �

Proposition 2.1. Let U be a Hilbert space and let Gi, i = 1, 2
be self-adjoint, strictly positive operators in U. Suppose that f ∈

L2loc(0,∞;U) is measurable and there exists a positive constant Mf >
0 such that

∥f (t)∥U ≤ Mf , ∀ t ≥ 0. (6)

Assume further that the operators G1 and G2 satisfy:

∥g∥U ≤ c0∥G
1/2
1 g∥U , ∀ g ∈ D(G1) (7)

and

αG2 = G1 + I, (8)

where c0 is a positive constant and the constant α satisfies:

α > max {c0 + 1, 2} . (9)

Then, for any initial state (Rw0, v0) ∈ H and any a > 0, where
(w0, v0) is independent of R, system (1) admits a unique solution
(wR, vR) ∈ C(0,∞; H) such that

lim
R→∞

[∥wR(t)∥U + ∥vR(t)∥U ] = 0 uniformly in [a,∞). (10)

Proof. Since AR is the generator of a C0-semigroup on H , for
any initial state (Rw0, v0) ∈ H and inhomogeneous term f ∈

L2loc(0,∞;U), system (1) admits a unique mild solution (wR, vR) ∈

C(0,∞; H)which is given by

(wR(t), vR(t)) = eARt(Rw0, v0)+

 t

0
eAR(t−s)(0, f (s))ds. (11)

Since D(AR) is dense in H , for any R > 0 and n ∈ Z+, we can find
(wn

0R, v
n
0R) ∈ D(AR) such that

∥(wn
0R, v

n
0R)− (Rw0, v0)∥H ≤

1
nR
. (12)

Owing to assumption (6), by exploiting the technique of mollifier,
we can find fn ∈ C∞(0,∞;U) such that |fn(t)| ≤ Mf and

∥fn(t)− f (t)∥L1loc (0,∞;U) → 0 as n → ∞. (13)

By (8), G1 and G2 are commutable, self-adjoint, strictly positive in
U . Owing to Lemma 2.1, (wn

R, v
n
R) ∈ C(0,∞;D(AR)) is the classical

solution:

(wn
R(t), v

n
R(t)) = eARt(wn

0R, v
n
0R)

+

 t

0
eAR(t−s)(0, fn(s))ds, ∀ n ∈ N. (14)

We first claim that for any given a > 0,

lim
R→∞

[∥wn
R(t)∥U + ∥vnR(t)∥U ] = 0

uniformly in n ∈ N and t ∈ [a,∞).
(15)
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