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a b s t r a c t

The leader–follower consensus problem for multi-agent systems over directed random graphs is
investigated.Motivated by the fact that inter-agent communication can be subject to random failurewhen
agents perform tasks in a complex environment, a directed randomgraph is used tomodel the random loss
of communication between agents, where the connection of the directed edge in the graph is assumed to
be probabilistic and evolves according to a two-state Markov Model. In the leader–follower network, the
leaders maintain a constant desired state and the followers update their states by communicating with
local neighbors over the random communication network. Based on convex properties and a stochastic
version of LaSalle’s Invariance Principle, almost sure convergence of the followers’ states to the convex
hull spanned by the leaders’ states is established for the leader–follower random network. A numerical
simulation is provided to demonstrate the developed result.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consensus problems that seek to agree upon certain quantities
of interest have attracted significant research attention. A com-
prehensive review of consensus problems is provided in Olfati-
Saber, Fax, and Murray (2007) and Ren, Beard, and Atkins (2007).
To achieve consensus, agents are generally required to exchange
information over a communication network as a means to coordi-
nate their behaviors, such as achieving a common heading direc-
tion in flocking problems (Jadbabaie, Lin, & Morse, 2003; Tanner,
Jadbabaie, & Pappas, 2007), agreeing on the group average in dis-
tributed sensing (Zhu &Martínez, 2010), or achieving consensus in
rendezvous and formation control problems (Dimarogonas & Kyr-
iakopoulos, 2007; Kan, Navaravong, Shea, Pasiliao, & Dixon, 2015),
to name a few. In most of these applications, consistent informa-
tion exchange between agents in either an undirected or directed
manner is a common assumption to ensure full cooperation among
team members. However, when agents operate in a complex en-
vironment, the inter-agent communication could be subject to

✩ This research is supported in part by NSF award numbers 1161260, 1217908,
and a contract with the AFRL Mathematical Modeling and Optimization Institute.
The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Wei Ren under
the direction of Editor Christos G. Cassandras.

E-mail addresses: kanzhen0322@ufl.edu (Z. Kan), jshea@ece.ufl.edu (J.M. Shea),
wdixon@ufl.edu (W.E. Dixon).

random failure due to either interference or unpredictable envi-
ronmental disturbance. Since task completion relies on commu-
nication and interaction among agents, achieving consensus over
such a stochastic communication network can be challenging.

Leader–follower containment control is a particular class of
consensus problems, in which the networked multi-agent system
consists of leader agents and follower agents. Generally, the leaders
are a small subset of the agents, which are informed of the global
task objectives, while the followers act under the influence of both
neighboring agents and the leaders through local interactions. A
main objective in leader–follower containment control is to drive
all followers’ states to a desired destination determined by the
leaders’ states. Hybrid control schemes are developed in Ji, Ferrari-
Trecate, Egerstedt and Buffa (2008) to drive the dynamic follower
agents into a convex polytope spanned by the stationary leader
agents, where the local interaction among agents is modeled as
an undirected graph. The work of Ji et al. (2008) is then extended
to multiple stationary and dynamic leaders under a directed
interaction graph in Cao, Ren, and Egerstedt (2012), Li, Ren, and
Xu (2012) and Meng, Ren, and You (2010). Containment control
for a leader–follower network under a switching graph is studied
in Lou and Hong (2012) and Notarstefano, Egerstedt, and Haque
(2011). In Kan, Klotz, and Dixon (2015), containment control is
applied to a social network to regulate the emotional states of
individuals to a desired end. For networked Lagrangian systems
with parametric uncertainties, distributed containment control is
developed in Mei, Ren, and Ma (2012). In the aforementioned
works, a deterministic dynamic system is considered, where
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dynamic agents communicate and coordinate with other agents
over an undirected or directed deterministic communication
network. Mean-square containment control of a multi-agent
system with communication noise is considered in Wang, Cheng,
Hou, Tan, andWang (2014). Since the results developed in Cao et al.
(2012), Ji et al. (2008), Kan et al. (2015), Li et al. (2012), Lou and
Hong (2012), Mei et al. (2012), Meng et al. (2010), Notarstefano
et al. (2011),Wang et al. (2014)may not be applicable to stochastic
communication networkswhere the existing communication links
experience random loss, an extension of the classical containment
control from the deterministic network to the stochastic network
is desirable.

Building on graph theory and probability theory, several
consensus results have been developed for random graphs. One of
the earliest consensus results over an undirected random network
is reported in Hatano and Mesbahi (2005), which proves that
agreement can be achieved almost surely if the communication
links between any pair of agents are activated independently with
a common probability. The undirected random graph in Hatano
and Mesbahi (2005) is extended to a general class of directed
random graphs in Porfiri and Stilwell (2007) and Wu (2006).
Necessary and sufficient conditions for consensus are developed in
Tahbaz-Salehi and Jadbabaie (2008) for graphs that are generated
by an ergodic and stationary random process. Mean-square-robust
consensus over a network with communication noise and random
packet loss is considered in the work of Zhang and Tian (2010)
and Zhang and Tian (2012). Stochastic consensus for a multi-
agent systemwith communication noise andMarkovian switching
topologies is investigated in Wang, Cheng, Ren, Hou, and Tan
(2015). However, the convergence results reported in Hatano and
Mesbahi (2005), Porfiri and Stilwell (2007), Tahbaz-Salehi and
Jadbabaie (2008), Wang et al. (2015), Wu (2006), Zhang and Tian
(2010), Zhang and Tian (2012) are only developed for leaderless
networks without considering how the leaders can influence the
followers to a desired end.

In this paper, the classical leader–follower containment control
problem for deterministic systems is extended to a stochastic sce-
nario. The leader–follower network is tasked to drive all followers
into a prespecified destination area (i.e., the convex hull spanned
by the leaders’ states) under the influence of the leaders. Only the
leaders are assumed to have the knowledge of the destination. To
move toward the specified destination, the followers communi-
cate and update their states with neighboring agents over a com-
munication network. Since wireless communication is subject to
random failure due to factors such as fading and packet loss, the
inter-agent communication is modeled as a random graph, where
each link evolves according to a two-state Markov Model to model
the random loss of the existing communication link. In addition,
the random communication network is assumed to be directed.
Rather than assuming that all edges share a common edge prob-
ability and evolve independently with their previous edge connec-
tion states as in Hatano and Mesbahi (2005), different edges are
allowed to have different transition probabilities in the current
work that evolve according to a Markov Model, which can be used
to model a large class of real-world networks to reflect the de-
pendence of the current system states on their previous states.
Moreover, compared to the works of Hatano and Mesbahi (2005),
Porfiri and Stilwell (2007), Tahbaz-Salehi and Jadbabaie (2008),Wu
(2006), a hierarchical network structure (i.e., leader–follower net-
work) is considered where one-sided influence of leaders is used
to affect the desired behaviors of the followers. Almost sure con-
vergence of the followers’ states to the convex hull spanned by the
leaders’ states over a random communication graph is then estab-
lished via the convex properties in Boyd and Vandenberghe (2004)
and a stochastic version of LaSalle’s Invariance Theorem (Kushner,
1971).

2. Problem formulation

A multi-agent system consisting of n agents that communicate
over wireless channels is considered. The wireless channels have
intermittent connectivity, which cause the connections among the
agents to vary with time. The communication graph is modeled
as a temporal network, or time-varying graph, G(t) = (V, E(t)).
The vertices V represent the agents, which do not vary with
time. The edges E(t) represent the connections among the agents
and do vary with time. The flow of information is assumed to
be asymmetric, so the edges in E(t) ⊂ V × V are directed.
Specifically, the directed edge


vj, vi


∈ E indicates that node vi

can receive information from node vj, but vj may not necessarily
receive information from vi. In the directed edge


vj, vi


, vi and vj

are referred to as the child node and the parent node, respectively.

2.1. Directed random graph

Consider first the graph at one particular time, say t = t0. Then,
suppressing the time dependence, G = (V, E) is a directed graph.
The graphG is called a directed randomgraph if the set of edgesE is
randomly determined. Let Ē ⊂ V ×V be a set of potential directed
edges connecting the nodes in V . Each potential edge


vj, vi


is

associated with a weight wij ∈ R+, which indicates how node vi
evaluates the information collected from vj. We assume that the
weight wij for each


vj, vi


is known initially and there are no

self loops, so (vi, vi) ∉ Ē, i = 1, 2, . . . , n. Associated with each
potential edge


vj, vi


∈ Ē , let there be aBernoulli randomvariable

δij. An edge

vj, vi


∈ Ē will exist in E if δij = 1 and will not exist

in E if δij = 0. It is assumed that, for different edges, the

δij


are

statistically independent.
Now, consider the temporal network, G(t), which consists of

a time sequence of directed random graphs in which the edge
set varies with t . In particular, each edge (i, j) evolves according
to a two-state homogeneous Markov process δij(t) for i, j ∈

{1, 2, . . . , n} with stationary state transition probability pij ∈

(0, 1], which indicates that, at the next time instant t ′, the edge
(i, j) will change its state to δij


t ′


= 1 − δij(t) with probability pij
and will remain the previous state δij


t ′


= δij(t) with probability
1 − pij.

Assumption 1. The random processes

δij(t)


do not change

infinitely fast, and thuswe can choose a sampling time∆t such that
with arbitrarily high probability, δij(t) = δij(t + t0) if 0 ≤ t0 < ∆t
for all i, j ∈ {1, 2, . . . , n}.

Note that Assumption 1 will be true for any real system. For
example, let T0 and T1 denote the expected dwell times in states
0 and 1 for the Markov process δij(t), respectively. Then, the
probability of staying in the same state during an observation
period can be made arbitrarily large by selecting an appropriate
∆t . For example, the probability of remaining in state 0 during an
interval of length ∆t is e−∆t/T0 .

We assume that the sequence of random graphs can be
discretized in the following way. Let tk = k∆t , k ∈ Z+ be a
time sequence, where ∆t ∈ R+ is a sufficiently small sampling
period during which we may assume the edge set is constant over
each time interval [tk, tk+1). Let G (k) denote the random graph
G (t) at t = tk. Note that G (k) is drawn from a finite sample
space, which we denote by Ḡ = {G1, . . . , GM}, and

Ḡ ≤ 2|Ē|,
which is determined by the power set of Ē . In a directed graph,
a directed path from node v1 to node vk is a sequence of edges
(v1, v2) , (v2, v3) , . . . , (vi, vk). If a directed graph contains a
directed spanning tree, every node has exactly one parent node
except for one node, called the root, and the root has directed paths
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