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a b s t r a c t

This paper addresses a new model-based fault detection, estimation, and prediction scheme for linear
distributed parameter systems (DPSs) described by a class of partial differential equations (PDEs). An
observer is proposed by using the PDE representation and the detection residual is generated by taking
the difference between the observer and the physical system outputs. A fault is detected by comparing the
residual to a predefined threshold. Subsequently, the fault function is estimated, and its parameters are
tuned via a novel update law. Though state measurements are utilized initially in the parameter update
law for the fault function estimation, the output and input filters in the modified observer subsequently
relax this requirement. The actuator and sensor fault functions are estimated and the time to failure (TTF)
is calculated with output measurements alone. Finally, the performance of detection, estimation and a
prediction scheme is evaluated on a heat transfer reactor with sensor and actuator faults.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The design of fault detection and prediction scheme is a critical
part of improving system reliability (Jiang, Marcel, & Vincent,
2006). Therefore several model-based detection and prognostics
schemes have been introduced in the literature for industrial
systems, which are traditionally described by ordinary differential
equations (ODEs). A robust prognostic scheme was developed by
Hansen, Hall, and Kurtz (1995). Fault diagnosis for gearbox was
introduced by utilizing a mathematical model of the physical
systems (Bartelmus, 2001). Vania and Pennacchi (2004) proposed
a detection and isolation scheme by using system representation.
Isermann (2004) introduced a model-based fault detection and
diagnosis scheme by generating symptoms. Jiang and Chowdhury
(2005) utilized an adaptive observer to handle a fault distribution
function. Biswas, Koutsoukos, Bregon, and Pulido (2009) developed
complementary approaches in fault detection and isolation in
dynamic systems.
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An adaptive threshold was generated in the research of
Meseguer, Puig, and Escobet (2006) to evaluate the fault detection
residual. Chinnam and Baruah (2003) and Kwan, Zhang, Xu, and
Haynes (2003) developed a stochastic process model to approxi-
mate the fault and estimate the remaining useful life (RUL) or time
to failure (TTF) of the system whereas the RUL was estimated in
Wang and Vachtsevanos (2001) by applying the dynamic wavelet
neural network (NN).

A variety of industrial systems including fluid flows, thermal
convection and chemical reaction processes are classified as
distributed parameter systems (DPS) since the system state
changes with both time and space. Therefore, the ODE models
given by lumped parameter representation for DPS are unsuitable
to mimic their behavior (Patan & Ucinski, 2005). Instead, the state
of a DPS is described by a partial differential equation (PDE).

Several fault detection and diagnosis schemes have been intro-
duced in the literature for DPS. Christofides (2001) approximated
DPS with finite dimensional ODEs; then, the reduced order ODE
model was utilized in the development of fault detection and di-
agnosis schemes. A detection observer based on the approximate
finite dimensional slow subsystem was introduced to detect and
isolate faults in Demetriou and Ito’s research (2002). Baniamerian
and Khorasani (2012) introduced a finite-dimensional geometric
method for fault detection and isolation (FDI) of parabolic PDEs by
constructing a set of residuals such that each one is only affected
by a fault.

Despite these interesting results, these detection and diagnosis
schemes (Baniamerian & Khorasani, 2012; Demetriou & Ito,
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2002) used a finite dimensional ODE representation of DPS;
consequently, they may suffer from false and missed alarms due
to model reduction. In addition, the fault can change the dynamics
of the overall system, thereby causing the reduced ordermodel and
resulting fault detection and diagnostics scheme to be inaccurate.

By contrast, this paper introduces a novel fault detection and
estimation scheme by using a novel observer, which is designed
directly basedonPDE representation ofDPS. Initially, a Luenberger-
type observer was designed using healthy DPS dynamics to esti-
mate system state and output. The estimated andmeasured system
outputs are compared to generate the detection residual, which is
shown to converge under healthy operating conditions in the ab-
sence of disturbance and uncertainty. A fault on the DPS can act as
an external input to the detection residual dynamics causing the
residual to increase. The fault is detected when this residual ex-
ceeds a predefined threshold.

Upon detecting a fault, an adaptive term is added to the
observer to learn the fault function. Although the fault detection
observer only requires the system output, the parameter update
law requires the system state to be available at all positions, which
is a major drawback.

Therefore, by using the linear property of the PDE representa-
tion, an input filter along with two output filters are utilized to
develop a new observer, which allows the determination of a pa-
rameter update law that tunes unknown fault parameter estima-
tion with measured system output alone. Upon detecting a fault
by using the filter-based observer, the detection and estimation
scheme is revisited.

With state and output availability, the detection residual and
parameter estimation errors are shown to be bounded in the
presence of any bounded uncertainties or disturbances while
asymptotic convergence is demonstrated in the absence of these
terms. In addition, with output alone the detection residual and
parameter estimation errors are shown to be bounded under
faults with bounded uncertainties or disturbances. Moreover, by
comparing the estimated fault parameters with their failure limits,
an explicit formula for online estimation of TTF or RUL is proposed.

The contributions of this paper include: (a) the development of
a novelmodel-based detection and estimation schemeby using the
PDE-baseddetection observerwith detectability conditions, (b) the
design of the detection, estimation and prediction scheme by using
a filter-based observer, which not only requires the system output
alone but also allows the estimation of actuator and sensor faults,
and (c) TTF prediction with outputs alone.

This paper is organized as follows. A class of linear DPS
described by a parabolic PDE is introduced in Section 2. Then the
detection and estimation scheme is developed in Section 3, when
the state is measurable and in Section 4 with output alone. Finally,
Section 5 applies the proposed scheme to a heat transfer reactor in
simulations.

2. Background and system description

The notations used in this paper are standard. A scalar function
v(x) ∈ L2(0, 1) is a square integrable onHilbert space L2(0, 1)with

the norm defined as ∥v∥2 =

 1
0 v

2(x)dx. Throughout the paper
the norm of a function v(x, t) is denoted by ∥v(t)∥ and the norm
of ∂v(x, t)/∂x is expressed as ∥vx(t)∥.

Consider a class of linear DPS expressed by the following
parabolic PDE with Dirichlet actuation given by

vt(x, t) = εvxx(x, t)+ λv(x, t)+ d(v(x, t), x, t) (1)

where x is the space variable and t ≥ 0 is the time variable with
boundary conditions defined by

vx (0, t) = −qv(0, t), v(1, t) = U(t), y(t) = v(0, t) (2)

where v : [0, 1] × R+
→ R represents the distributed state

of the system; d(v(x, t), x, t) stands for the system uncertainty
or disturbance; U(t) denotes control input, λ > 0 is a positive
constant; ε and q are constant scalars; vt = ∂v/∂t , vx = ∂v/∂x and
vxx = ∂2v/∂x2 are partial derivatives of ν and y(t) is the system
output.

Assumption 1. The system uncertainty or disturbance is bounded
above such that ∥d(v, x, t)∥ ≤ d̄ for all (v, x) and t ≥ 0, where
d̄ > 0 is a known constant. A more specific representation can
be found in Baniamerian and Khorasani (2012); Yao and El-Farra
(2011).

In this paper, an actuator and sensor fault type at the boundary
condition are considered and will be described next.

2.1. Actuator fault

Under a multiplicative actuator fault at the boundary condition
of the DPS, the system in (1) and (2) can be described by

vt(x, t) = εvxx(x, t)+ λv(x, t)+ d(v(x, t), x, t), (3)

subject to the boundary conditions given by

vx (0, t) = −qv(0, t), v(1, t) = θU(t), y(t) = v(0, t),
(4)

where θ is the multiplicative fault parameter bounded by |θ | ≤

θmax. Alternatively, the boundary condition with the actuator
fault can be expressed as v(1, t) = U(t) + h(U(t), t), where
h(U(t), t) = ΘU(t) = (θ − 1)U(t) andΘ = θ − 1.

Moreover, the fault function can be written as

h(U(t), t) = Ω(t − ti)ΘU(t), (5)

where ti is the time of fault occurrence and Ω(t − ti) is the time
profile of the fault defined byΩ(τ ) =


0, if τ < 0
1 − e−κτ , if τ ≥ 0 , where κ

represents the fault growth rate, which should be a constant. This
time profile allows both incipient and abrupt faults with different
growth rates κ to be represented. However, for fault prediction,
incipient faults are considered.

2.2. Sensor fault

Under a sensor fault, the system measured output is written as

y(t) = θsν (0) , (6)

where θs is a positive scalar representing a multiplicative sensor
fault bounded by θsmin ≤ |θs| ≤ θsmax. Under healthy conditions,
the value of θs is taken as unity whereas it changes in the presence
of a sensor fault. The following standard assumptions are required
in order to proceed.

Assumption 2. There exists a stabilizing controller that guaran-
tees the boundedness of the system state under healthy operating
conditions.

Remark 1. This assumption separates a faultwith instability of the
system. For fault detection, the closed-loop DPS should be stable.
Smyshlyaev and Krstic (2004) proposed a state and output feed-
back controller by using the backstepping approach to stabilize the
parabolic PDE by using a control inputwhich is a function of output
y(t).

Assumption 3. The fault type is known. Moreover, a single fault
occurs on the system at any given time.

Remark 2. This assumption is used for fault estimation.
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