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a b s t r a c t

In this paper, the control problem is addressed for a hybrid PDE–ODE system that describes a nonuniform
gantry crane systemwith constrained tension. A bottom payload hangs from the top gantry by connecting
a flexible cable. The flexible cable is nonuniform due to the spatiotemporally varying tension applied to
the system. The control objectives are: (i) to position the payload to the desired setpoint, (ii) to regulate the
transverse deflection of the flexible cable, and (iii) to keep the tension values remaining in the constrained
space. Cooperative control laws are proposed and the integral-barrier Lyapunov functions are employed
for stability analysis of the closed-loop system. Adaption laws are developed for handling parametric
uncertainties. The bounded stability is guaranteed through rigorous analysis without any simplification
of the dynamics. In the end, numerical simulations are displayed to illustrate the performance of the
proposed cooperative control.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Overhead cranes (d’Andrea Novel, Boustany, Conrad, & Rao,
1994; d’Andrea Novel & Coron, 2000; Fang, Dixon, Dawson, &
Zergeroglu, 2003; Ngo & Hong, 2012) are widely used to move
the large/heavy objects horizontally for either manufacturing or
maintenance applications in many industrial environments, such
as ocean engineering, nuclear industries, and airports, etc. In Fang,
Ma, Wang, and Zhang (2012), a novel planning-based adaptive
control method is proposed for the underactuated overhead crane
system. A typical gantry crane system consists of a top trolley, a
flexible cable, and a bottom payload as shown in Fig. 1. During the
transport of the payload to the desired setpoint, the payload swings
freelywhichmakes accurate positioningmore difficult. In addition,
the flexible property of the cable and the external disturbances
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exerted on the flexible structures, would cause large vibrations.
The large vibrations lead to the fluctuating forces stressed on
the cable which will result in the fatigue failure, lead to limited
productivity and degrade the performance of system. Therefore,
the vibration control for a gantry crane system is an important
engineering problem (Fang, Wang, Sun, & Zhang, 2014; Rahn,
Zhang, Joshi, & Dawson, 1999).

Various flexible structures (Bhikkaji, Moheimani, & Petersen,
2012; Bobasu, Danciu, Popescu, & Rasvan, 2012; Do & Pan,
2008; He, Ge, & Zhang, 2011; Jin & Guo, 2015; Krstic, 2009;
Krstic, Guo, Balogh, & Smyshlyaev, 2008; Nguyen & Hong, 2012;
Paranjape, Guan, Chung, & Krstic, 2013; Yang, Hong, & Matsuno,
2005a), represented by coupled partial differential equations
(PDEs)-ordinary differential equations (ODEs), are ubiquitous in
industry. In literature, many control techniques have been used
for various distributed parameter systems (Bernard & Krstic, 2014;
Christofides & Armaou, 2000; Guo & Jin, 2015; Ren, Wang, &
Krstic, 2013; Wang, Ren, & Krstic, 2012; Wu, Wang, & Li, 2012,
2014; Yang, Hong, & Matsuno, 2005b). Among those methods,
boundary control is regarded as a relativelymore practicalmethod.
Due to the large applications in industry, the control problem for
string-based structures has received much attention. Boundary
control is designed in Rahn et al. (1999) for a cable with a
gantry crane modeled by a string structure, and the experiment is
implemented to verify the control performance. The vibration of a
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flexible string system is suppressed by using the robust adaptive
boundary control in He and Ge (2012), where the stability of the
closed-loop system is discussed via Lyapunov’s direct method.
However, a constant axial tension is assumed in papers mentioned
above. From a practical point of view, many string systems do not
have to be uniform and it could have a varying tension. The control
design for nonuniform flexible structures has also made a great
deal of progress. The transverse vibrations of a moving string with
a varying tension are regulated in Yang, Hong, andMatsuno (2004)
by developing a robust adaptive boundary control. In Nguyen and
Hong (2010), an axially moving string with nonlinear behavior
is investigated by using a robust adaptive boundary control,
where a hydraulic actuator equipped with a damper is used at
the right boundary of the string. By using state feedback, the
vibration problem of a moving string is addressed by employing
the boundary control design in Fung and Tseng (1999), where the
asymptotic and exponential stability is achieved. For the system
with uncertain parameters, the adaptive control method is usually
employed. The adaptive control is studied in Liu and Tong (2015)
and Liu, Tang, Tong, and Chen (2015) for nonlinear discrete-time
systemswith dead-zones by constructing adaptive neural network
controller and the originality of approach lies in that an adaptive
dead-zone compensatory term is framed to overcome the effect
of dead-zones. In Liu, Gao, Tong, and Chen (2016), a more general
scheme is designed for nonlinear discrete-time systems with
nonlinear dead-zone input and unknown discrete-time control
direction by using discrete-time Nussbaum gain technique.

Tension is the pulling force exerted by a cable trying to restore
its original when it is deformed. The large tension will make the
cable broken especially at the connection point, as the boundaries
of a cable tend to fray readily. Therefore, keeping the tension
values remaining in the constrained space may effectively avoid
serious hazards. The vibration of the flexible cable is known to
be the main cause of the swing of the payload, which can result
in the unprecise positioning. Hamilton’s principle is applied to
model the dynamics of the gantry crane system. The mechanical
energy of the system is used to construct the Lyapunov candidate
functions (He et al., 2011; He, He, & Ge, 2014; Queiroz, Dawson,
Nagarkatti, & Zhang, 2000; Zhang, He, & Ge, 2012) for the control
design and the stability analysis. Due to the strain resulting
from the transverse displacement of the cable, the gantry crane
system is modeled to have a varying tension which is given as
a nonlinear spatiotemporally varying function. Since the varying
tension is a function of the state variable,with the barrier Lyapunov
function (Tee, Ren, & Ge, 2011), the tension constraint satisfaction
is achieved by ensuring that the state variables remain in the given
space. In recent years, the barrier Lyapunov function iswidely used
for both the ODE systems (Liu & Tong, 2016) and PDE systems (He
& Ge, 2015; He, Zhang, & Ge, 2014a).

In this paper, through the dynamical models and Lyapunov’s
method, in order to position the payload to the desired position
D, to suppress the transverse vibrations of the flexible cable,
and to keep the tension values remaining in the constrained
space, two boundary control laws (act on the trolley and payload,
respectively) are needed to be cooperatively designed for the
gantry crane system. Therefore, we define them as cooperative
control law. All the signals in the proposed control depend on the
boundary displacement and slope measurements of the flexible
cable, making the control laws implementable. The control of
the infinite-dimensional crane system is achieved by using two
single-point control inputs.

2. Problem formulation and preliminaries

As shown in Fig. 1, a bottom payload hangs from the top of the
gantry (trolley) by connecting a flexible cable. In this paper, we

Fig. 1. A gantry crane with flexible cable.

consider the transverse deflection of the cable only. Frame xbOyb
is the fixed inertia frame, and frame xaOya is the local reference
frame fixed along the vertical direction of the cable. Let y(x, t) be
the position of the flexible cable with respect to frame xbOyb at
the position x for time t , y0(t) denote the position of the gantry,
andw(x, t) represent the elastic transverse reflection with respect
to frame xaOya at the position x for time t . From Fig. 1, we have
y(x, t) := y0(t) + w(x, t).

Remark 1. Notations (·)′ :=
∂(·)

∂x and ˙(·) :=
∂(·)

∂t are used through-
out of this paper.

Remark 2. Due to the connection between the trolley and the top
boundary of the flexible cable, i.e., w(0, t) = 0, then, y(0, t) :=

y0(t), ẏ(0, t) := ẏ0(t) and ÿ(0, t) := ÿ0(t) are the position,
velocity and acceleration of the trolley respectively. y(L, t), ẏ(L, t)
and ÿ(L, t) are the displacement, velocity and acceleration of the
payload respectively.

2.1. Dynamics of the nonuniform gantry crane system

In this paper, we consider the spatiotemporally varying tension
T (x, t) and the nonuniformmass per unit lengthρ(x) of the flexible
cable. Dynamic equations of the nonuniform gantry crane system
in Fig. 1 can be derived by using Hamilton’s principle (Goldstein,
1951). The kinetic energy of the nonuniform gantry crane system
Ek(t) can be represented as

Ek(t) =
M
2

[ẏ(L, t)]2 +
m
2

[ẏ(0, t)]2 +
1
2

 L

0
ρ(x) [ẏ(x, t)]2 dx, (1)

where x and t represent the independent spatial and time variables
respectively, L is the length of the flexible cable, m is the mass of
the trolley, andM is the mass of the payload.

The potential energy Ep(t) due to a spatiotemporally varying
tension T (x, t) can be obtained from

Ep(t) =
1
2

 L

0
T (x, t)


w′(x, t)

2 dx
=

1
2

 L

0
T (x, t)


y′(x, t)

2 dx, (2)

where the cable tension T (x, t) can be expressed as

T (x, t) = T0(x) + λ(x)[w′(x, t)]2

= T0(x) + λ(x)[y′(x, t)]2, (3)

where T0(x) > 0 is the initial tension, andλ(x) ≥ 0 is the nonlinear
elastic modulus (Qu, 2001).
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