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a b s t r a c t

This paper proposes a non-model based approach to iterative learning control (ILC) via extremumseeking.
Single-input–single-output discrete-time nonlinear systems are considered, where the objective is to
recursively construct an input such that the corresponding system output tracks a prescribed reference
trajectory as closely as possible on finite horizon. The problem is formulated in terms of extremum
seeking control, which is amenable to a range of local and global optimisation methods. Contrary to the
existing ILC literature, the formulation allows the initial condition of each iteration to be incorporated
as an optimisation variable to improve tracking. Sufficient conditions for convergence to the reference
trajectory are provided. The main feature of this approach is that it does not rely on knowledge about the
system’s model to perform iterative learning control, in contrast to most results in the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative learning control (ILC) is a learning based method for
tracking a prescribed trajectory. It carries out the same task multi-
ple times with respect to recursively updated control inputs while
improving the tracking performance by learning from previous ex-
ecutions (Moore, 1993; Moore, Dahleh, & Bhattacharyya, 1992;
Xu & Tan, 2003). ILC is known to achieve good performance in
the presence of repeating disturbances and certain model uncer-
tainty due to its iteratively learning feature. Practically, ILC has
been applied to awide range of engineering applications, including
robotics (Messner, Horowitz, Kao, & Boals, 1991), inductionmotors
(Saab, 2004), rolling mills (Garimella & Srinivasan, 1998), stroke
rehabilitation (Freeman, Rogers, Burridge, Hughes, & Meadmore,
2015; Freeman, Rogers, Hughes, Burridge, &Meadmore, 2012), and
aluminium extruders (Pandit & Buchheit, 1999); see Ahn, Chen,
and Moore (2007) for a classification of the ILC literature. It is also
useful within the context of motion planning (Srinivasan & Ruina,
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2006). Bristow, Tharayil, and Alleyne (2006) contains an excellent
survey of a particular ILC algorithmbyMoore (1993),where several
topics in analysis (e.g. performance, transients, robustness) and de-
sign methods (e.g. plant inversion, quadratically optimal) are cov-
ered.

This paper proposes an extremum-seeking based framework
within which to perform iterative learning control of discrete-
time single-input–single-output time-varying nonlinear systems
on finite horizon. It is noted here that multi-input–multi-output
systems are addressable with the same approach. A key feature
of extremum seeking is its ability to locate an optimum with
respect to some measure without assuming knowledge about
the underlying models governing the dynamics of the nonlinear
systems (Ariyur & Krstić, 2003; Zhang & Ordóñez, 2011). Such
knowledgemay be unavailable due to the difficulty associatedwith
modelling of complicated nonlinear systems. Extremum seeking
has found applications in a wide array of problems, including
biochemical reactors (Guay, Dochain, & Perrier, 2003;Wang, Krstić,
& Bastin, 1999), gas-turbine combustors (Moase, Manzie, & Brear,
2010), power electronics (Scheinker, Bland, Krstić, & Audia, 2014),
multi-agent source seeking (Khong, Tan, Manzie, & Nešić, 2014),
and finite-horizon optimal control (Frihauf, Krstić, & Başar, 2013).
Within the context of ILC, extremum seeking has been applied to
pulse shaping in a double-pass laser amplifier (Ren, Frihauf, Rafac,
& Krstić, 2012).

In this paper, we propose a unifying framework in which
to apply optimisation-based extremum seeking algorithms to
ILC in the spirit of Khong, Nešić, Tan, and Manzie (2013) and
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Nešić, Tan, Moase, and Manzie (2010). In particular, the proposed
framework is shown to be amenable to a broad range of local
and global optimisation methods (Khong, Nešić, Manzie, & Tan,
2013; Pintér, 1996; Teel & Popović, 2001). This allows complexity
of implementation and convergence speed of the algorithms to
be taken into account in the control design stage. For instance, if
large variations in the control input is undesirable but convergence
to local optima is tolerable, local optimisation methods may be
selected. Furthermore, Newton-based methods can be employed
if a quadratic convergence rate is solicited. In the proposed
framework, the cost function is defined as the distance between the
system output and the reference trajectory. For local optimisation
methods, ultimately bounded asymptotic stability of local minima
is demonstrated. In the case of global optimisation, it is shown that
the proposed ILC converges to a global minimum.

Several optimisation-based ILCmethods can be found in the lit-
erature, but the vast majority of them rely on knowledge on the
models. For instance, the updating control laws as well as con-
vergence of the ILC methods in Gunnarsson and Norrlöf (2001)
and Owens and Hätönen (2005) depend on the precise knowledge
of the nominal model. Owens, Hatonen, and Daley (2009) pro-
poses a robust monotone gradient-based scheme for ILC of linear
time-invariant (LTI) systems, where the multiplicative modelling
uncertainty is assumed to be bounded. The robustness analysis
therein reminisces that performed in Bristow et al. (2006). Schoel-
lig, Mueller, and D’Andrea (2012) considers the case where an LTI
model is subject to noisy disturbances and proposes a combined
model-based Kalman filter and convex optimisation approach to
ILC. Mishra, Topcu, and Tomizuka (2011) proposes a primal bar-
rier method to ILC of LTI systems contingent on the availability of
knowledge about the gradient and Hessian of the quadratic cost
function, which in turn is dependent on the models.

While the standard ILC literature considers learning controllers
for systems that perform the same operation repetitively under the
same initial conditions, we depart from such a setting and incor-
porate the initial conditions as parts of the optimisation variables,
so that they may vary from one iteration to the next for improved
tracking. Indeed, the former is subsumed by the latter by setting
the initial conditions to be constant across all iterations. The for-
mulation in this paper differs from that of repetitive control (Long-
man, 2000) and repetitive learning control (Sun, Ge, & Mareels,
2006), where the initial conditions of the current iteration are set
to be the final conditions of the previous trial. It is also noteworthy
that the proposed extremum seeking based ILC, which updates the
control input signal, differs from iterative feedback tuning (Hjal-
marsson, Gevers, Gunnarsson, & Lequin, 1998), where non-model
based optimisation methods are exploited to iteratively tune con-
troller’s parameters in order to achieve tracking of an output tra-
jectory given a fixed reference input.

The paper has the following structure. A formal definition of
ILC and the class of nonlinear systems considered in this paper are
stated in the next section. In Section 3, ILC is formulated in terms
of an extremum seeking problem. Subsequently, local and global
optimisation based extremum seeking approaches are discussed
in Sections 4 and 5 respectively. Section 6 contains simulation
examples illustrating the main results. Finally, some concluding
remarks are provided in Section 7.

2. Iterative learning control

The problem of iterative learning control (ILC) is formulated
in this section. The special case where the plant is linear time-
invariant (LTI) and a commonly used ILC method are reviewed.

2.1. Nonlinear plants

Consider the following dynamical discrete-time time-varying
nonlinear state-space system defined over a finite time inter-
val/horizon k = 0, 1, . . . , T :

x(k + 1) = f (x(k), u(k), k) x(0) = x̄;
y(k) = h(x(k), u(k), k), (1)

where f : Rn
× R × T → Rn and h : Rn

× R × T → R are locally
Lipschitz functions in each argument and T := {0, 1, . . . , T }.
Repeated disturbances that are present on both the state-update
differential and state-to-output algebraic equations are accounted
for by f and h being functions of the time unit k. The corresponding
input–output operator for system (1) is denoted by Σ , whereby
y = Σ(x̄, u). Also, given a z : T → R, define the ℓ2 norm by

∥z∥2 :=

 T
t=0

z(k)2.

With a slight abuse of notation, ∥v∥2 is also used to denote the
Euclidean norm for the vector v ∈ Rn. Only discrete-time plants
are considered in this paper. It is a natural formulation because ILC
uses information from previous trials which needs to be stored on
suitable digitalmedia. By the same token, the dynamics of the plant
are assumed to evolve along a finite horizon [0, T ].

Denote by r : T → R the reference trajectory. The control
objective is to construct a u∗ and an x̄∗ such that the corresponding
system output y∗

= Σ(x̄∗, u∗) tracks r as accurately as possible. In
other words,

(x̄∗, u∗) := argmin
u∈U;x̄∈Ω

∥r − Σ(x̄, u)∥2,

whereU is an appropriate compact subset of {u : T → R} andΩ a
compact subset of Rn. In general, any ℓp-normmay be employable
when defining the distance above. Note that a reference r may
not be realisable by the system, i.e. there exist no x̄∗ and u∗ such
that Σ(x̄∗, u∗) = r . In this case, the achievable minimum of the
optimisation problemabove is nonzero.WhenΣ is an LTI operator,
realisability of references may be studied using the notions of
controllability and observability. Characterising this when Σ is
nonlinear is a lot harder, and may require knowledge about the
solutions to (1).

When f and h are known precisely, a brute-force optimisation
over x̄, u(1), . . . , u(T ) can be used to generate a y∗ such that the
error e(k) := r(k) − y∗(t) is minimised. Alternatively, should this
prove to be an infeasible approach, by introducing an additional
iteration-time domain j, several model-based ILC algorithms in the
literature (Moore, 1993; Xu & Tan, 2003) can be used to iteratively
design uj based on previous trials’ outputs yi = Σ(x̄, ui) for i < j
such that uj → u∗ in the ℓ2-norm for a fixed x̄ across all iterations.
By tuning the parameters of the ILC algorithms appropriately, the
desired transient properties, such as monotone convergence, may
be achieved.

Control design in ILC can be specified in the following form.
If x̄j is the initial condition and uj is the input applied to the
plant at trial j = 0, 1, 2, . . . and ej := r − yj = r −

Σ(x̄j, uj) is the resulting tracking error, the control design involves
constructing an iteratively updated control law expressed as a
functional relationship typified by the equation

x̄j+1 = g1(ej, . . . , ej−s, uj, . . . , uj−t , x̄j, . . . , x̄j−t)

uj+1 = g2(ej, . . . , ej−s, uj, . . . , uj−t , x̄j, . . . , x̄j−t),

where s, t ≤ j. Ideally, the control law should have the property
that u∞ := limj→∞ uj = u∗ and x̄∞ := limj→∞ x̄j = x̄∗, or
equivalently, e∞ := limj→∞ ej = 0. A looser requirement on this is
that there exists some small ϵ > 0 such that ∥u∞ − u∗

∥2 < ϵ and
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