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a b s t r a c t

In this paper, we consider a scenario where an eavesdropper can read the content ofmessages transmitted
over a network. The nodes in the network are running a gradient algorithm to optimize a quadratic utility
function where such a utility optimization is a part of a decision making process by an administrator.
We are interested in understanding the conditions under which the eavesdropper can reconstruct the
utility function or a scaled version of it and, as a result, gain insight into the decision-making process. We
establish that if the parameter of the gradient algorithm, i.e., the step size, is chosen appropriately, the
task of reconstruction becomes practically impossible for a class of Bayesian filters with uniform priors.
We establish what step-size rules should be employed to ensure this.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, tremendous advances in the areas of
communication and computation have facilitated the construction
of complex systems. The design and analysis of these systems
involve solving large optimization problems. Utility maximization,
optimal flow, expenditure minimization, and traffic optimization
are examples of such problems. Due to the size of these problems,
it is often required that problems are solved over a network of
interconnected processors. Inmany scenarios, the implementation
of the solution to the optimization problem is in the public domain.
However, from an operational point of view, it is important that
the way that the decision is made remains confidential. In other
words, while the optimal decision can be known by everyone,
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the utility function itself should remain confidential. Portfolios
in portfolio optimization and local utilities in resource allocation
can be considered as examples of such utility functions that
need to be kept confidential. This especially becomes an issue as
more computations related to operating the critical infrastructure
(e.g. power distribution networks) are carried out in the cloud
(Akyol, 2012). The importance of confidentiality, integrity, and
availability is well understood in the security of data and ICT
services (Bishop, 2002) and cloud computing (Chen, Paxson,
& Katz, 2010). In these settings, confidentiality corresponds to
ensuring the non-disclosure of data, integrity is related to the
trustworthiness of data, and availability is concerned with the
timely access to the data or system functionalities.

In this paper, wemainly focus on the question of confidentiality
—particularly, the confidentiality of the utility functions evenwhen
the security of the network is compromised and an eavesdropper
can listen to all the information being exchanged over the network
during the course of solving the optimization problem. We
consider scenarios where the utility function has a quadratic form.
Specifically, the following question is answered:when is it possible
to reconstruct a utility function, or a scaled version of it, via having
access to the iterations produced by an iterativemethod? The iterative
method considered in this paper is a gradient ascent algorithm. The
choice of a gradient algorithm is inlinewith the recent observations
that cast a favorable light on employing first-order methods to
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solve very large optimization problems (Cevher, Becker, & Schmidt,
2014). Note that the choice of quadratic programs is not very
restrictive as trust-region optimization techniques allow us to
solve any general optimization problem using a sequence of
constrained quadratic programs recursively (Nocedal & Wright,
1999).

The problem that is addressed here is related to the one
considered in the context of differential privacy (Dwork, 2008)
and, to a larger extent, the application of differential privacy in
optimization (Chaudhuri, Monteleoni, & Sarwate, 2011; Gupta,
Ligett, McSherry, Roth, & Talwar, 2010; Mangasarian, 2011).
However, it is important to note that there, the price for guaranteed
confidentiality is paid in terms of data integrity and the accuracy
of the solution. To ensure differential privacy, it is known that the
information passed between the processing nodes at each step
of the optimization algorithm should be perturbed by a random
variable from a Laplace distribution (Dwork, 2008). This results in
the algorithm not yielding an accurate solution. Here, we argue
that the confidentiality of the objective (but not the solution)
can be guaranteed in practice with no impact on the accuracy of
the solution, if the algorithm parameter (the step size) is chosen
appropriately, i.e., it is picked randomly from a sufficiently large
set of suitable step sizes. In addition to differential privacy, other
notions of privacy in optimization and machine learning have
recently been pursued, e.g., see Duchi, Jordan, and Wainwright
(2012), Vaidya, Yu, and Jiang (2008) andWeeraddana, Athanasiou,
Fischione, and Baras (2013). Note that, in this paper, we are not
directly contributing to the privacy-preserving literature, per se.
Our main objective is to point out that, in the setups discussed,
one does not need to worry about privacy since estimating the
underlyingparameters is practically impossible due computational
restrictions (at least, with current technologies). Note that this
problem is also related to the system identification and the
parameter estimation literature, where the aim is to extract the
parameters of the underlying utility or dynamics. However, in our
setup, the eavesdropper cannot inject proper reference signals to
fully probe the system (that is commonly known as the persistent
excitation and is necessary for achieving the estimation objective
Moore, 1983). Finally, in Gentry, Saligrama, and Feron (2001),
the agents use their actions to learn about the strategies or
the utilities of the other agents to subsequently devise optimal
strategies. However, in that study, the computational aspects of the
problem were largely unexplored and only linear programs were
considered.

The outline of this paper is as follows. In Section 2, the problem
that is considered in this paper is formulated. In Section 3, we
consider the casewhere the eavesdropper has access to the iterates
that are generated during the course of solving an unconstrained
quadratic program. In this section, different choices of the step size
are considered and conditions forwhich the utility function cannot
be constructed successfully are discussed. Next, in Section 4, we
consider the case where the problem is constrained. Concluding
remarks are given in Section 5.

1.1. Notation

The sets of reals, nonnegative reals, integers, and nonnegative
integers are, respectively, denoted by R, R≥0, Z, and Z≥0. The rest
of the sets are denoted by calligraphic Roman letters, such as M.
Specifically, Sn

+
is defined to be the set of symmetric positive-

definite matrices in Rn×n. We define vec : Rn×m
→ Rnm to be a

vectorization operator that puts all the columns of a matrix into
a vector sequentially. Finally, we use A ⊗ B to be the Kronecker
product of matrices A and B.

2. Problem formulation

Consider the following optimization problem:

max
x∈Rn

−
1
2
x⊤Qx − q⊤x, (1a)

s.t. Cx ≤ d, (1b)

whereQ ∈ Sn
+
, q ∈ Rn, C ∈ Rm×n, d ∈ Rm, andX , {x ∈ Rn

| Cx <
d} ≠ ∅. The optimization problem (1) is solved by an administrator
over a network via an optimization method, F (·), given by
x[k + 1] = F (x[k]), x[0] ∈ X. (2)
Throughout this paper, we assume that F (·) is the gradient ascent
algorithm in which different step-size selection methods can be
used. This assumption is, partly, motivated by favorable results on
first-order methods for solving large-scale optimization problems
(Cevher et al., 2014). However, this assumption is also in place to
greatly simplify the proofs and the presentation.

Remark 1. At first glance, the update rule in (2) appears to be
a centralized implementation. However, distributed algorithms
using primal decomposition as well as the inner problems for
distributed algorithms using dual decomposition (see Bertsekas &
Tsitsiklis, 1997) can be both rewritten, albeit in an aggregated form,
in the form of (2).

Remark 2. The results presented in this work, at least in part,
are applicable to more general utility functions, e.g., logarithmic
functions. However, the selection of the quadratic utility functions
results in linear operators that greatly simplify the proofs.
Moreover, the quadratic utility functions, although partially
conservative, havemany applications and arewidely used in signal
processing, e.g., weighted least squares, and machine learning,
e.g. support vector machines (Vaidya et al., 2008).
Themeasurement model of the eavesdropper is as follows. For any
two consecutive measurements of the optimization variable x[k]
and x[k + 1], for some k ∈ Z≥0, the eavesdropper can construct a
measurement of the form

y[k] = x[k] − x[k + 1]. (3)

Therefore, at time step k + 1, the eavesdropper has access to
measurement pairs (x[t], y[t])kt=0. Providing the solution to the
following problems is of interest.

Problem 3 (Utility Function Reconstruction). Assuming that the
eavesdropper can measure x[k] for all k and the values of A and b
are known, under what conditions on the step size selection of the
gradient descent algorithms can the eavesdropper estimate (Q̂ , q̂)
such that Q = γ Q̂ and q = γ q̂ for some γ > 0?
Solving the problem above enables the eavesdropper to determine
theway that decisions aremade. For example, it can be determined
which variable has a bigger impact on the solution of the
optimization problem (1). Hence, it is not necessary to exactly
estimate γ .

Remark 4. In this paper, we assume that the communication is
carried out over real and noiseless channels. Alternatively, one
may consider the effects of quantization and noise on the utility
reconstruction problem. However, this is beyond the scope of this
paper.
Finally, we have the following standing assumption.

Assumption 5. The parameters (Q , q) ∈ Q ⊆ Sn
+

× Rn are ran-
domly generated according to the non-degenerate probability den-
sity function p : Q → R≥0. Further, we assume the distribution
of (Q , q) is independent of the initialization of the algorithm x[0],
which is uniformly selected from {x|x⊤x ≤ 1}. The eavesdropper
knows these probability distributions.
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