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a b s t r a c t

The first order stable spline (SS-1) kernel (also known as the tuned-correlated (TC) kernel) is used
extensively in regularized system identification, where the impulse response is modeled as a zero-mean
Gaussian processwhose covariance function is given bywell designed and tuned kernels. In this paper, we
discuss the maximum entropy properties of this kernel. In particular, we formulate the exact maximum
entropy problem solved by the SS-1 kernel without Gaussian and uniform sampling assumptions. Under
general sampling assumption, we also derive the special structure of the SS-1 kernel (e.g. its tridiagonal
inverse and factorization have closed form expression), also giving to it a maximum entropy covariance
completion interpretation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A core issue of system identification is the design of model es-
timators able to suitably balance structure complexity and adher-
ence to experimental data. This is also known as the bias–variance
problem in statistical literature. Traditionally, this problem is tack-
led by applying the maximum likelihood/prediction error method
(ML/PEM), see e.g., Ljung (1999), together with model order se-
lection criteria, such as AIC, BIC and cross validation. Recently, a
different method has been introduced in Pillonetto and De Nico-
lao (2010) and further developed in Pillonetto, Chiuso, and De
Nicolao (2011), Chen, Ohlsson, and Ljung (2012), Chen, Andersen,
Ljung, Chiuso, and Pillonetto (2014); see also the recent survey (Pil-
lonetto, Dinuzzo, Chen, De Nicolao, & Ljung, 2014). Its key idea is to
face the bias–variance problem via well-designed and tuned regu-
larization. More specifically, the impulse response h(t) is modeled
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as a zero-mean Gaussian process h(t) ∼ GP(0, k(t, s; α)), where
k(t, s; α) is the covariance (kernel) function, and α is the hyper-
parameter vector, see e.g., Rasmussen and Williams (2006). The
key step is to design a suitable kernel structure which reflects our
prior knowledge on the system to be identified, e.g., stability. Once
k(t, s; α) is determined, α is tuned by maximizing the marginal
likelihood, and then the conditional mean of h(t) is returned as the
impulse response estimate.

Several kernel structures have been proposed, e.g., the stable
spline (SS) kernel in Pillonetto and De Nicolao (2010) and the
diagonal and correlated (DC) kernel in Chen et al. (2012), which
have shown satisfying performance via extensive simulated case
studies. In view of this, it seems interesting to investigate how,
beyond the empirical evidence, the use of these regularized
approaches can be justified by theoretical arguments. Different
perspectives can be taken, e.g. deterministic arguments in favor
of SS and DC kernels are developed in Chen et al. (2012)
while Chiuso, Chen, Ljung, and Pillonetto (2014) discusses the
link between the first order stable spline (SS-1) kernel and the
BrownianBridge process suggesting that the SS-1 kernel is indeed a
natural description for exponentially decaying impulse responses.
In this paper, we will instead work within the Bayesian context,
discussing the maximum entropy (MaxEnt) properties of the SS-1
kernel.

The MaxEnt approach has been proposed by Jaynes to derive
complete statistical prior distributions from incomplete a priori
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information (Jaynes, 1982). Among all distributions that satisfy
some constraints, e.g. in terms of the value taken by a few
expectations, the MaxEnt criterion chooses the distribution
maximizing the entropy. The justification underlying this choice
is that the MaxEnt distribution, subject to available knowledge, is
the one that can be realized in the greatest number of ways, see
also Jaynes’ Concentration Theorem (Jaynes, 1982). A preliminary
study on the MaxEnt property of kernels for system identification
was developed in Pillonetto and De Nicolao (2011). Working in
continuous time (CT) and under Gaussian assumption, the problem
was to derive the MaxEnt prior using only information on the
smoothness and exponential stability of the impulse response.
The arguments in Pillonetto and De Nicolao (2011) were however
quite involved, mainly due to the infinite-dimensional nature of
the problem and the fact that the differential entropy rate of a
generic CT stochastic process is not well-defined. Another recent
contribution is Carli (2014) where, under Gaussian and uniform
sampling assumption, it is shown that the SS-1 kernel matrix
can be given a MaxEnt covariance completion interpretation
(Dempster, 1972), that is then exploited to derive its special
structure (namely that it admits a tridiagonal inverse with closed
form representation as well as factorization).

In this paper, we study the MaxEnt properties of the discrete-
time (DT) SS-1 kernel. We first formulate the MaxEnt problem
solved by the DT SS-1 kernel without Gaussian and uniform sam-
pling assumptions. Then, we extend the result of Carli (2014) and
link it to our former result: under general sampling assumption,we
show that the inverse of the SS-1 kernel matrix is tridiagonal and
moreover, the inverse and its factorization have closed form ex-
pression, which can be used to derive numerically more stable and
efficient algorithms for regularized system identification (Chen &
Ljung, 2013, Carli, Chen, & Ljung, 2014, Section 5).What ismore,we
show that the SS-1 kernel matrix is the solution of a maximum en-
tropy covariance extension problem (Dempster, 1972) with band
constraints (the same holds for the kernel matrix associated with
the DT Wiener process).

2. MaxEnt property of Wiener and SS-1 kernels

We are dealing with real-valued DT stochastic processes
defined on an ordered index set T = {ti|0 ≤ ti < ti+1 ≤

∞, i = 0, 1, 2, . . . , }. A real-valued DT stochastic process w(i)
with i = 0, 1, 2, . . . , is called a white Gaussian noise if the w(i)’s
are independent identically Gaussian distributed with zero mean
and constant variance. For a real valued random variable X , we
let p(x), E(X) and V(X) to denote its probability density function,
mean and variance of X , respectively. Moreover, the differential
entropyH(X) of X is defined asH(X) = −


S p(x) log p(x)dx, where

S is the support set of X .

2.1. DT Wiener process

Let w(i) with i = 0, 1, 2, . . . , be a white Gaussian noise with
constant variance c and construct g(t) as follows:

g(t0) = 0 with t0 = 0,

g(tk) =

k
i=1

w(i − 1)
√
ti − ti−1, k = 1, 2, . . .

(1)

Then it is easy to see that g(t) is a Gaussian processwith zeromean
and covariance (kernel) function:

Wiener: KWiener(t, s; c) = c min(t, s), t, s ∈ T (2)
and moreover, g(t) is the DT Wiener process since g(t0) = 0,
g(t) is Gaussian distributed with zero mean, and has independent
increments with g(ti)− g(tj) ∼ N


0, c(ti − tj)


for 0 ≤ tj < ti. We

will now show that g(t) has MaxEnt property and this result will
then be used to derive the MaxEnt property of the SS-1 kernel.

Lemma 1. 2 Let h(t) be any stochastic process with h(t0) = 0 for
t0 = 0. For any n ∈ N, the DTWiener process (1) is the solution to the
MaxEnt problem

maximize
h(·)

H(h(t1), h(t2), . . . , h(tn))

subject to V(h(ti) − h(ti−1)) = c (ti − ti−1)

E(h(ti)) = 0, i = 1, . . . , n

(3)

where for simplicity H(h(t1), h(t2), . . . , h(tn)) denotes the differen-
tial entropy of [h(t1) h(t2) · · · h(tn)]T .

2.2. The first order SS kernel

Based on Lemma 1, we can derive the MaxEnt property of the
SS-1 kernel:

SS-1: K SS-1(t, s; α) = c min(e−βt , e−βs),

α = [c β]
T , c ≥ 0, β > 0, t, s ∈ T

(4)

which was introduced independently in a deterministic argument
in Chen et al. (2012) and called the tuned correlated (TC) kernel.
It is fair to call (4) the SS-1 kernel here, since the ‘‘stable’’ time
transformation involved in deriving the SS-1 kernel plays a key role
in the following theorem.

Theorem 1. Define a stochastic process as follows:

ho(tk) =

n−1
i=k

w(n − 1 − i)

e−βti − e−βti+1 ,

k = 0, . . . , n − 1, ho(tn) = 0 with tn = ∞ (5)

where w(i) with i = 0, 1, 2, . . . , is a white Gaussian noise with
constant variance c. Then ho(t) is a Gaussian process with zero mean
and the SS-1 kernel (4) as its covariance function. Further let h(t) be
any stochastic process with h(tn) = 0 for tn = ∞. For any n ∈ N, the
Gaussian process (5) is the solution to the MaxEnt problem

maximize
h(·)

H(h(t0), h(t1), . . . , h(tn−1))

subject to V(h(ti+1) − h(ti)) = c

e−βti − e−βti+1


E(h(ti)) = 0, i = 0, . . . , n − 1 (6)

Remark 1. In the cost function of (3) and (6), if we divide the
differential entropy of a finite sequence of the stochastic process
by n and let n go to ∞, then the limit (if exists) becomes the
differential entropy rate of the stochastic process (Cover & Thomas,
2012). However, this limit does not exist for Gaussian processes
(1) and (5), see Ardeshiri and Chen (2015, Remark 1) for details,
and thus the differential entropy of a finite sequence of stochastic
processes is used instead.

3. Special structure of Wiener and SS-1 kernels and their
MaxEnt interpretation

It is easy to see that both stochastic processes in (1) and (5)
are not only Gaussian processes but also Markov processes with
order-1 Markov property, see e.g., Rasmussen andWilliams (2006,
Appendix B), Chen and Ljung (2015, Section 5). This observation
implies the kernel matrix of the Wiener and SS-1 kernels has

2 All proofs have been deferred to the Appendix.
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