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a b s t r a c t

A method of global stability analysis is proposed for a feedback system with dead-zone nonlinearities.
Using a global property that the output of a saturation function is bounded, the bound on the input to
the saturation function is estimated using the L∞ norm of a linear subsystem. The feedback system can
be treated as a feedback system with a narrower sector bound using this method, and a sharper global
stability condition is obtained by applying the circle or Popov criterion to the system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Linear systems with saturation nonlinearities occur very often
in practice. These systems can be represented with dead-zone
nonlinearities equivalently. Stability analysis of these systems
is important. The circle and Popov criteria guarantee absolute
stability for feedback systems with sector-bounded nonlinearities
(Khalil, 1996), and they are widely used for stability analysis
and control design of such feedback systems. Application to the
anti-windup compensator design is a representative example
(Zaccarian & Teel, 2011).

If the sector-bounded function contains the dead-zone function
globally, global asymptotic stability of the equilibrium can be
tested using the circle criterion. In the case that the circle criterion
does not hold for the system, methods of estimating the domain
of attraction have been studied. In Hindi and Boyd (1998) and
Pittet, Tarbouriech, and Burgat (1997), the domain of attraction
is estimated using quadratic and Lur’e-type Lyapunov functions
based on the circle and Popov criteria, where a narrower sector-
bounded nonlinearity that contains the dead-zone function locally
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around the origin is used. The conditions have been represented
using matrix inequalities and the maximization of the size of the
domain of attraction has been considered. By fixing some of the
parameters, these matrix inequalities simplify to linear matrix
inequalities (LMIs) (Boyd, Ghaoui, Feron, & Balakrishnam, 1994).
A relation between the achievable domains of attraction derived
from a linear analysis and the circle criterion has been clarified for
conservativeness (Kiyama & Iwasaki, 2000).

Less conservative estimates of the domain of attraction were
obtained using a quadratic Lyapunov function in Gomes da
Silva and Tarbouriech (2005) and Hu, Lin, and Chen (2002). An
invariance condition set by exploring the special property of the
saturation nonlinearity has been developed (Hu et al., 2002), and
a modified sector condition has been used (Gomes da Silva &
Tarbouriech, 2005). Because these stability conditions are LMIs
with respect to not only a Lyapunov variable but also a control gain
matrix, they are useful in control design.

The above methods are based on Lyapunov stability and they
use the property of the dead zone or saturation functions in a
bounded interval around the origin. In other words, none of the
methods consider anyproperty outside the interval,withoutwhich
global stability cannot be shown. Even if the circle criterion is not
satisfied globally, there is a possibility that the feedback system is
globally asymptotically stable. To derive a sharper global stability
condition for the feedback system with dead-zone nonlinearities,
in this paper, we propose a method of estimating the bound on the
input of the dead-zone function using the property that the output
of the saturation function is bounded globally. A sharper global
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stability condition can then be obtained by applying the circle or
Popov criterion to the feedback system with the narrower sector-
bounded nonlinearities.

Note that a system with dead-zone functions can be described
as a piecewise affine system exactly. Sufficient stability conditions
for global stability with a piecewise quadratic Lyapunov function
have been given for piecewise affine systems (Johansson, 2003),
and this method has been applied to a feedback system with a
control input saturation. In this paper, we compare our method
with the circle and Popov criteria and this piecewise method by
taking numerical examples.

2. Problem setting

Consider the feedback system described by

ẋ = Ax + Bu, (1)
y = Cx, (2)
u = −ψ(y), (3)

where u ∈ Rm, y ∈ Rm, x ∈ Rn. The ith row vector of the matrix C is
denoted ci, and the jth column vector of B is denoted bj. (A, B) and
(C, A) are assumed to be controllable and observable, respectively.

The plant transfer function is given by

P(s) = C(sI − A)−1B. (4)

ψ(y) is given by

ψ(y) = (ψ1(y1), . . . , ψm(ym))T , (5)

where the elements are dead-zone functions described by

ψi(σ ) =

 0 |σ | ≤ 1
σ − 1 σ > 1
σ + 1 σ < −1

(6)

for σ ∈ R.
The origin of the feedback system is an equilibrium point, and

in the vicinity of the origin, the system is described by ẋ = Ax. A
is assumed to be a stable matrix, which is a necessary condition
for stability. We examine a condition for global stability of the
feedback system. The equilibrium point x = 0 is a globally stable
equilibrium point of ẋ = f (x), x(t0) = x0 if it is stable and
limt→∞ x(t) = 0 for all x0 ∈ Rn (Sastry, 1999).

The circle and Popov criteria are briefly summarized in the
following. A nonlinear function ψi(σ ) belongs to the sector [0, Ki]

if, for σ ∈ R,

0 ≤
ψi(σ )

σ
≤ Ki. (7)

The next lemma is cited from Boyd et al. (1994), where the sign
of the matrix B is changed because our system is given in the form
of negative feedback.

Lemma 1 (Popov Criterion). Suppose that ψi(yi) is a time-invariant
memoryless nonlinearity that belongs to the sector [0, Ki] for i =

1, . . . ,m. The origin is then globally asymptotically stable if there exist
matrices X,Λ, and W that satisfy the LMIs
Θ −XB + ATCTΛ+ CTKW
⋆ −ΛCB − BTCTΛ− 2W


< 0, (8)

X = XT > 0, (9)
W = diag(w1, . . . , wm) > 0, (10)
Λ = diag(λ1, . . . , λm) ≥ 0, (11)

where K = diag(K1, . . . , Km), Θ = XA + ATX, and the symbol
⋆ represents the appropriate entry resulting in an overall symmetric
matrix.

According to the relation between the circle criterion and the
Popov criterion (Khalil, 1996) and the matrix inequality condition
of Lemma 1, the next lemma is obtained by settingΛ = 0.

Lemma 2 (Circle Criterion). Suppose that ψi(yi, t) is a memoryless,
possibly time-varying, nonlinearity,which belongs to the sector [0, Ki]

for i = 1, . . . ,m. The origin is then globally asymptotically stable if
the condition of Lemma 1 is satisfied withΛ = 0.

Because the dead-zone function (6) belongs to a sector [0, 1]
globally, global stability conditions can be derived using the circle
and Popov criteria. These criteria give sufficient conditions for
global stability for all the nonlinear functions that satisfy the
sector condition. Therefore, the stability conditions tend to be
conservative for specific nonlinearities such as those of saturation
or the dead zone. Our aim is to give a sharper condition for the
global stability of feedback systems with dead-zone nonlinearities
using a global property of saturation functions.

3. Main result

First, we represent the dead-zone function ψi(σ ) with a
saturation function φi(σ ). Namely,

ψi(σ ) = σ − φi(σ ), (12)

where

φi(σ ) =


σ |σ | ≤ 1
1 σ > 1

−1 σ < −1.
(13)

The feedback system is then expressed as

ẋ = Acx + Bd, (14)
y = Cx, (15)
d = φ(y), (16)

where

Ac = A − BC (17)

φ(y) = (φ1(y1), . . . , φm(ym))T . (18)

We assume that Ac is a stable matrix. This assumption is
reasonable because the feedback system is not globally stable for
unstable Ac . The bound on the output y in the steady state is
estimated according to the next lemma.

Lemma 3. Let Ac be a stable matrix. For any initial value x(0) and an
arbitrarily small positive number δ, there exists a finite time T > 0
such that, for t ≥ T ,

|yi(t)| ≤ δ +

m
j=1

 t

0
|cieAc (t−τ)bj|dτ i = 1, 2, . . . ,m. (19)

Proof. From (14) and (15),

yi(t) = cieAc tx(0)+

m
j=1

 t

0
cieAc (t−τ)bjdj(τ )dτ (20)

for i = 1, 2, . . . ,m. Because Ac is a stable matrix, there exists a
finite T > 0 for any δ > 0 for which

|cieAc tx(0)| ≤ δ, t ≥ T (21)

is satisfied. Therefore, for t ≥ T ,

|yi(t)| ≤ δ +

m
j=1

 t

0

cieAc (t−τ)bjdj(τ ) dτ . (22)
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