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a b s t r a c t

This paper considers a class of generalized convex games where each player is associated with a convex
objective function, a convex inequality constraint and a convex constraint set. The players aim to compute
a Nash equilibrium through communicating with neighboring players. The particular challenge we
consider is that the component functions are unknown a priori to associated players. We study two
distributed computation algorithms and analyze their convergence properties in the presence of data
transmission delays and dynamic changes of network topologies. The algorithm performance is verified
through demand response on the IEEE 30-bus Test System. Our technical tools integrate convex analysis,
variational inequalities and simultaneous perturbation stochastic approximation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances on information technologies facilitate real-
time message exchanges and decision-making among geograph-
ically dispersed strategic entities. This has boosted the emergence
of new generation of networked systems; e.g., the smart grid and
intelligent transportation systems. These networked systems share
some common features: on one hand, the entities do not belong to
a single authority and may pursue different or even competitive
interests; on the other hand, each entity keeps private informa-
tion which is unaccessible to others. It is of great interest to de-
sign practical mechanisms which allow for efficient coordination
of self-interested entities and ensure network-wide performance.
Game theory along with its distributed computation algorithms
represents a promising tool to achieve the goal.

In many applications, distributed computation is executed in
uncertain environments. For example, mobile robots are deployed
in an operating environment where environmental distribution
functions are unknown to robots in advance; e.g., Stankovic,
Johansson, and Stipanovic (2012) and Zhu and Martínez (2013b).
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In traffic pricing, pricing policies of system operators may not be
available to drivers. In optimal power flow control, the structural
parameters of power systems are of national security interest and
kept confidential from the public. The absence of such information
makes game components; e.g., objective and constraint functions,
inaccessible to players. Very recently, the informational constraint
has been stimulating the investigation of adaptive algorithms,
including Frihauf, Krstic, and Başar (2011), Liu and Krstic (2011),
Stankovic et al. (2012) for continuous games and Marden, Young,
Arslan, and Shamma (2009), Zhu andMartínez (2013b) for discrete
games.
Literature review. Non-cooperative game theory has been widely
used as amathematical framework to reason aboutmultiple selfish
decision makers; see for instance Başar and Olsder (1982). These
games have found a variety of applications in economics, com-
munication and robotics; see Altman and Başar (1998), Chung,
Hollinger, and Isler (2011), Dockner, Jorgensen, Long, and Sorger
(2006), Frihauf et al. (2011) and Mitchell, Bayen, and Tomlin
(2005). In non-cooperative games, decision making of individu-
als is inherently distributed. Very recently, this attractive feature
has been utilized to synthesize cooperative control schemes, and a
partial reference list for this regard includes (Arsie, Savla, & Fraz-
zoli, 2009; Arslan, Marden, & Shamma, 2007; Li & Marden, 2011;
Stankovic et al., 2012; Zhu & Martínez, 2013b).

The set of papers more relevant to our work is concerned with
generalized Nash games where strategy spaces are continuous
and the actions of players are coupled through utility and con-
straint functions. Generalized Nash games are first formulated in

http://dx.doi.org/10.1016/j.automatica.2015.10.012
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2015.10.012
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.10.012&domain=pdf
mailto:muz16@psu.edu
mailto:frazzoli@mit.edu
http://dx.doi.org/10.1016/j.automatica.2015.10.012


M. Zhu, E. Frazzoli / Automatica 63 (2016) 82–91 83

Arrow and Debreu (1954). Since then, a great effort has been dedi-
cated to studying the existence and structural properties of gener-
alized Nash equilibria in; e.g., Rosen (1965) and the recent survey
paper (Facchinei & Kanzow, 2007). A number of algorithms have
been proposed to compute generalized Nash equilibria, including
ODE-based methods (Li & Basar, 1987; Rosen, 1965), nonlinear
Gauss–Seidel-type approaches (Pang, Scutari, Facchinei, & Wang,
2008), iterative primal–dual Tikhonov schemes (Yin, Shanbhag, &
Mehta, 2011) and best-response dynamics (Palomar& Eldar, 2010).

As mentioned, the set of papers (Frihauf et al., 2011; Liu &
Krstic, 2011; Marden et al., 2009; Stankovic et al., 2012; Zhu &
Martínez, 2013b) investigates the adaptiveness of game theoretic
learning algorithms. However, none of the papersmentioned in the
last two paragraphs studies the robustness of the algorithms with
respect to network unreliability; e.g., data transmission delays,
quantization and dynamically changing topologies. In contrast,
the robustness has been extensively studied for consensus and
distributed optimization, including, to name a few, Jadbabaie, Lin,
andMorse (2003) and Nedic, Ozdaglar, and Parrilo (2010) for time-
varying topologies, Rabbat and Nowak (2005) for quantization and
Münz, Papachristodoulou, and Allgower (2010) for time delays. Yet
the adaptiveness issue has not been addressed in this group of
papers.
Contributions. In this paper, we aim to solve a class of generalized
convex games over unreliable networks where the structures of
component functions are unknown to the associated players. That
is,we aim to simultaneously address the issues of adaptiveness and
robustness for generalized convex games.

In the games, each player is associated with a convex objective
function and subject to a private convex inequality constraint
and a private convex constraint set. The component functions are
assumed to be smooth and are unknown to the associated players.
We investigate distributed first-order gradient-based computation
algorithms for the following two scenarios:

[Scenario One] The game map is pseudo-monotone and the
maximumdelay (equivalently, themaximumnumber of packet
dropouts or link breaks) is bounded but unknown;
[Scenario Two] The inequality constraints are absent, the
(reduced) game map is strongly monotone and the maximum
delay is known.

Inspired by simultaneous perturbation stochastic approxima-
tion for optimization in Spall (2003), we utilize finite differences
with diminishing approximation errors to estimate first-order
gradients. We propose two distributed algorithms for the two sce-
narios and formally prove their asymptotic convergence. The com-
parison of the two proposed algorithms is given in Section 5.1.
The analysis integrates the tools from convex analysis, variational
inequalities and simultaneous perturbation stochastic approxi-
mation. The algorithm performance is verified through demand
response on the IEEE 30-bus Test System. A preliminary version of
the current paper was published in Zhu and Frazzoli (2012) where
the adaptiveness issue was not investigated. Due to space limita-
tion, some proofs are omitted and can be found at Zhu and Frazzoli
(2015).

2. Problem formulation

In this section, we present the generalized convex game
considered in the paper. It is followed by the notions and notations
used throughout the paper.

2.1. Generalized convex game

Consider the set of players V , {1, . . . ,N} where the state
of player i is denoted as x[i]

∈ Xi ⊆ Rni . The players are selfish

and pursue different interests. In particular, given the joint state
x[−i]

∈ X−i ,


j≠i Xj of its rivals,1 each player i aims to solve the
following program parameterized by x[−i]

∈ X−i:

min
x[i]∈Xi

fi(x[i], x[−i]), s.t. G[i](x[i], x[−i]) ≤ 0, (1)

where fi : Rn
→ R and G[i]

: Rn
→ Rmi with n ,


i∈V ni. In the

remainder of the paper, we assume that the following properties
about problem (1) hold:

Assumption 2.1. The maps fi and G[i] are smooth, and the maps
fi(·, x[−i]) and G[i](·, x[−i]) are convex in x[i]. The set Xi is convex and
compact, and X ∩ Y ≠ ∅ where X ,


i∈V Xi and Y ,


i∈V Yi with

Yi , {x ∈ X | G[i](x) ≤ 0}.

We now proceed to provide an equivalent form of problem (1).
To achieve this, we define the set-valued map X f

i : X−i → 2Xi as
follows:

X f
i (x

[−i]) = {x[i]
∈ Xi | G[i](x[i], x[−i]) ≤ 0}.

The set X f
i (x

[−i]) represents the collection of feasible actions for
player i when its opponents choose the joint state of x[−i]

∈ X−i.
With the map X f

i , problem (1) of player i is equivalent to the
following one:

min
x[i]∈X f

i (x
[−i])

fi(x[i], x[−i]). (2)

Given x[−i]
∈ X−i, each player i aims to solve problem (2).

The collection of such coupled optimization problems consists of
the generalized convex game (for short, CVX). For the CVX game,
we adopt the generalized Nash equilibrium (for short, GNE) as the
solution notion which none of the players is willing to unilaterally
deviate from:

Definition 2.1. The joint state x̃ ∈ X ∩ Y is a generalized Nash
equilibrium of the CVX game if the following holds:

fi(x̃) ≤ fi(x[i], x̃[−i]), ∀x[i]
∈ X f

i (x̃
[−i]), ∀i ∈ V .

Denote by XCVX the set of GNEs of the CVX game. The following
lemma verifies the non-emptiness of XCVX.

Lemma 2.1. The set of generalized Nash equilibria of the CVX game is
not empty, i.e., XCVX ≠ ∅.

Proof. Recall that fi is convex and X ∩Y is compact. Hence, XCVX ≠

∅ is a direct result of Facchinei and Kanzow (2007) and Rosen
(1965). •

In the CVXgame, the players desire to seek aGNE. It is noted that
fi, G[i], and Xi are private information of player i and unaccessible
to others. In order to compute a GNE, it becomes necessary
that the players are inter-connected and able to communicate
with each other to exchange their partial estimates of GNEs. The
interconnection between players will be represented by a directed
graph G = (V , E) where E ⊂ V × V \ diag(V ) is the set of edges.
The neighbor relation is determined by the dependency of fi and/or
G[i] on x[j]. In particular, (i, j) ∈ E if and only if fi and/or G[i] depend
upon x[j]. Denote by N IN

i , {j ∈ V | (i, j) ∈ E} the set of in-
neighbors of player i.

In this paper, we aim to develop distributed algorithms which
allow for the computation of GNEs in the presence of the following
two challenges.

1 We use the shorthand −i , V \ {i} throughout the paper.
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