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a b s t r a c t

This paper provides a novel approach to the problem of attitude tracking for a class of almost globally
asymptotically stable feedback laws on SO(n). The closed-loop systems are solved exactly for the rotation
matrices as explicit functions of time, the initial conditions, and the gain parameters of the control laws.
The exact solutions provide insight into the transient dynamics of the system and can be used to prove
almost global attractiveness of the identity matrix. Applications of these results are found in model
predictive control problems where detailed insight into the transient attitude dynamics is utilized to
approximately complete a task of secondary importance. Knowledge of the future trajectory of the states
can also be used as an alternative to the zero-order hold in systems where the attitude is sampled at
discrete time instances.

© 2015 Published by Elsevier Ltd.

1. Introduction

The nonlinear control problem of stabilizing the attitude dy-
namics of a rigid body has a long history of study and is im-
portant in a diverse range of engineering applications related to
e.g. quadrotors (Lee, Leoky, & McClamroch, 2010), inverted 3-
D pendulums (Chaturvedi, McClamroch, & Bernstein, 2009), and
robotic manipulators (Hu et al., 2009). It is interesting from a the-
oretical point of view due to the nonlinear state equations and
the topology of the underlying state space SO(3). An often cited
result states that global asymptotical stability on SO(3) cannot
be achieved by means of a continuous, time-invariant feedback
(Bhat & Bernstein, 2000). The literature does however provide
results such as almost global asymptotical stability through con-
tinuous time-invariant feedback (Chaturvedi, Sanyal, & McClam-
roch, 2011; Sanyal, Fosbury, Chaturvedi, & Bernstein, 2009), almost
semi-global stability (Lee, 2012), or global stability by means of a
hybrid control approach (Mayhew, Sanfelice, & Teel, 2011b). The
parameterizations used to represent SO(3) has important implica-
tions for the limits of control performance (Bhat & Bernstein, 2000;
Chaturvedi et al., 2011; Mayhew, Sanfelice, & Teel, 2011a). In par-
ticular, the use of local representations yields local results. In most
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cases, it is preferable to either use global representations such as
the unit quaternions or to workwith the space of rotationmatrices
directly (Chaturvedi et al., 2011).

The exact solutions of a closed-loop system gives a detailed
picture of both its transients and asymptotical behaviour and can
hence be of use in control applications. The literature on solutions
to attitude dynamics can be divided into two categories. Firstly, in a
number of works the solutions are obtained during the control de-
sign process, e.g.using exact linearization (Dwyer, 1984) or optimal
control design techniques such as the Pontryagin maximum prin-
ciple (Spindler, 1998). Secondly, there areworkswhosemain focus
is solving the equations defining rigid-body dynamics under a set
of specific assumptions (Ayoubi & Longuski, 2009; Doroshin, 2012;
Elipe & Lanchares, 2008). This paper falls into the second category.

There is a considerable literature on the kinematics and dynam-
ics of n-dimensional rigid-bodies. This literature includes works
on attitude stabilization (Maithripala, Berg, & Dayawansa, 2006),
attitude synchronization (Lageman, Sarlette, & Sepulchrev, 2009),
distributed averaging (Matni & Horowitz, 2014), and generalized
Newtonian equations of motion (Hurtado & Sinclair, 2004). It also
includes the authors previous work (Markdahl & Hu, 2014; Mark-
dahl, Thunberg, Hoppe, & Hu, 2013), which we shall comment on
shortly. A key difference between the study of SO(3) and SO(n)
is that parameterizations such as the unit quaternions cannot be
used. Another is the motivation: work on SO(3) is usually moti-
vated by applications concerning the attitude of rigid bodies.Work
on SO(n) is not only of theoretical concern however, it also finds
applications in the visualization of high-dimensional data (Thakur,
2008).
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Themain contribution of this paper is to provide exact solutions
to differential equations representing closed feedback loops on
SO(n). Recent work on this problem include Markdahl, Hoppe,
Wang, and Hu (2012), Markdahl et al. (2013) andMarkdahl and Hu
(2014). Other works such as Ayoubi and Longuski (2009), Doroshin
(2012) and Elipe and Lanchares (2008) are related in spirit but
address somewhat different problems. The work Markdahl et al.
(2012) considers the solutions to closed-loop kinematics on SO(3).
An application towardsmodel predictive control (MPC) is proposed
but left unexplored. The more general problem of solving two
differential equations on SO(n) is treated inMarkdahl et al. (2013).
An application towards the problem of continuous actuation under
discrete-time sensing is considered. The work Markdahl and Hu
(2014) generalizes the results of Markdahl et al. (2013) to a greater
class of feedback laws. This paper in turn generalizes Markdahl
andHu (2014) and explores the applications proposed inMarkdahl
et al. (2012, 2013). Note thatmany of the results of this paper easily
extends to the case of SE(n) and may be combined with position
control laws in an inner–outer loop feedback scheme to achieve
pose stabilization on SE(n) (Roza & Maggiore, 2012).

This paper is structured as follows. Section 2 recalls the notation
and some basic properties of matrix analysis, it can be skipped if
the reader is familiarwith that topic. Section3presents the attitude
stabilization problem and introduces Problem 1, the problem of
solving the closed-loop state equations. Section 4.1 generalizes
a class of known control laws on SO(3) to the case of SO(n). It
contains the main result of this paper, the solution to Problem 1.
It also makes use of the exact solutions to prove that the proposed
algorithms stabilize System 1 almost globally. Section 6 explores
practical applications of the exact solutions to problems of model
predictive control and continuous feedback in sampled systems.
Section 8 provides some brief concluding remarks.

2. Preliminaries

Let A, B ∈ Rn×n. The spectrum of A is written σ(A). The
transpose and conjugate transpose of A is written A⊤ and A∗

respectively. The commutator of A and B is defined by [A, B] =

AB − BA. Their inner product is defined by ⟨A, B⟩ = tr(A⊤B) and
the Frobenius norm by ∥A∥F = ⟨A,A⟩

1
2 .

The set of nonsingular matrices over a field F is denoted by
GL(n, F ). The unitary group is denoted byU(n) = {U ∈ GL(n, C) |

U−1
= U∗

}. The orthogonal group is O(n) = {Q ∈ GL(n, R) |

Q−1
= Q⊤

}. The special orthogonal group is denoted by SO(n) =

{R ∈ O(n) | detR = 1}. In this paper we define

R = {R ∈ SO(n) | −1 ∈ σ(R)}.

It can be shown that {R ∈ SO(n) | R⊤
= R}/{I} ⊂ R. Equality

holds in the cases of n ∈ {2, 3}.
The Lie algebra of SO(n) is denoted by so(n) = {S ∈ Rn×n

|

S⊤
= −S}. In this paper, we use S to denote the matrix LogR ∈

so(n) for R ∈ SO(n) \ R.
The set of symmetric matrices is S = {P ∈ Rn×n

| P⊤
= P}.

The set of positive-semidefinite matrices is denoted by P = {P ∈

S | σ(P) ⊂ [0, ∞)}. The set of positive-definite matrices is
P ∩ GL(n, R).

The solution to a differential equation Ẋ = F(t,X) is denoted
X(t; t0,X0) where t is the time, t0 is the initial time, and X0 is the
initial condition. If the system is time independent we set t0 = 0
and omit this dependence.

The principal matrix logarithm Log is defined on the set {A ∈

GL(n, R) | σ(A) ∩ (−∞, 0] = ∅} (Culver, 1966). It satisfies
Im σ(LogA) ⊂ {z ∈ iR | |z| < π} (Higham, 2008). Since any
rotation matrix R is normal, it follows that R = U3U∗ and the
logarithm of R may be calculated as LogR = U Log(3)U∗, where

U ∈ U(n). Moreover, 3 = exp(i2) for a diagonal matrix 2
which satisfies 2ii ∈ (−π, π) for all R ∈ SO(n) \ R. Hence
Log(3) = i2 and LogR = iU2U∗. Thematrix logarithm allows us
to calculate the geodesic distance between R1,R2 ∈ SO(n) using
the Riemannian metric

dR(R1,R2) =
1

√
2
∥ Log(R⊤

1 R2)∥F .

By the kth root of a normal matrix A = U3U∗ we refer to its
principal root, the normal matrix A

1
k = U3

1
k U∗. The principal root

satisfies R
1
k = exp( 1

k S) ∈ SO(n). Moreover, R
1
k ∉ SO(n) \ R if

R ∉ SO(n) \ R.

3. Problem statement

From a mathematical perspective it is appealing to strive for
generalization. Consider the evolution of a positively oriented n-
dimensional orthogonal frame represented by R ∈ SO(n). The
dynamics on SO(n) are given by Ṙ = �R. This paper concerns
the following system.

System 1. Consider the system

Ṙ = �(R)R (1)

where R ∈ SO(n) and � : SO(n) → so(n). The input is given by �,
i.e. the system is actuated on a kinematic level.

The kinematic level stabilization problem on SO(n) concerns
the design of an � that stabilizes the identity matrix. Eq. (1)
states that R can be actuated along any direction of so(n), its
tangent space at the identity. Note that SO(n) is invariant under
the kinematics (1), i.e. any solution R(t;R0) to (1) for which R0 ∈

SO(n) remains in SO(n) for all t ∈ [0, ∞). This paper concerns a
class of almost globally stabilizing feedback laws � that allow (1)
to be solved for R as a function of time, any design parameters, and
the initial conditions. It also analyses the stability of said class of
control laws and discusses possible applications of these results.

An equilibriumof (1) is said to be almost globally asymptotically
stable if it is asymptotically stable and the region of attraction is all
of SO(n) except for a set of measure zero. A set N ⊂ SO(n) has
measure zero if for every chart φ : S → R

1
2 n(n−1) in some atlas of

SO(n), it holds that φ(S ∩ N ) has Lebesgue measure zero.

Problem 1. For a given almost globally stabilizing feedback law
� : SO(n) → so(n), solve System 1 for R(t;R0), i.e. for R as
function of the time t ∈ [0, ∞) and all initial conditions R0 ∈

SO(n) belonging to the region of attraction of the identity matrix.

Previous work on global level attitude stabilization apply the
stable–unstable manifold theorem (Chaturvedi et al., 2011; Lee,
2012; Sanyal et al., 2009) or use Lyapunov function arguments
(Mayhew et al., 2011b) to establish the region of attraction of
the identitymatrix. The stable–unstablemanifold theorem (Sastry,
1999) is however ineffective to prove almost global asymptotical
stability for systems that are actuated on a kinematic level when
the unstable equilibriummanifold corresponds to the uncountable
set {R ∈ SO(n) | R⊤

= R} \ {I} ⊂ R.
This paper presents a novel approach to establishing almost

global asymptotical stability by means of exact solutions to the
closed-loop system kinematics. It is possible to establish global
existence and uniqueness of the solutions, see Lemma 1 in the
Appendix. Statements regarding control performance can hence
be based on the properties of the exact solutions. This paper uses
the solutions to show that the region of attraction of the identity
matrix for the closed-loop systems generated by Algorithms 1–2 is
SO(n) \ R. The desired result follows since R is a set of measure
zero in SO(n).
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