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Dynamic systems with a linear program (LP) embedded can be found in control and optimization of
bioreactor models based on dynamic flux balance analysis (DFBA). Derivatives of the dynamic states with
respect to a parameter vector are essential for open and closed-loop dynamic optimization and parameter
estimation of such systems. These derivatives, given by a forward sensitivity system, may not exist
because the optimal value of a linear program as a function of the right-hand side of the constraints is not
continuously differentiable. Therefore, nonsmooth analysis must be applied which provides optimality
conditions in terms of subgradients, for convex functions, or Clarke’s generalized gradient, for nonconvex
functions. This work presents an approach to compute the necessary information for nonsmooth
optimization, i.e., an element of the generalized gradient. Moreover, a numerical implementation of the
results is introduced. The approach is illustrated through a large-scale dynamic flux balance analysis

Lexicographic derivative example.
Linear programming
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1. Introduction

Consider a parameter-dependent system of ordinary differen-
tial equations (ODE) of the form

x(t, p) = f(t, x(t, p), p, h(X(t, p), p)), Vt e (to, ], (1)
X(to, p) = fo(p),

where h(x(t,p),p) is the optimal value of the state- and
parameter-dependent linear program

h(x(t, p), p) = min c'v (2)

s.t. Av = bx(t,p), p),
v > 0.

We denote Eq. (1) with h given in Eq. (2) as a dynamic system with
a linear program embedded. A broad class of dynamic optimization

* The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Constantino M.
Lagoa under the direction of Editor Richard Middleton.

E-mail addresses: hoeffner@mit.edu (K. Héffner), kamil@mit.edu (K.A. Khan),
pib@mit.edu (P.I. Barton).

http://dx.doi.org/10.1016/j.automatica.2015.10.026
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

problems for this type of system can be formulated as

t
mpin Jp) = / w(X(t, p), p)dt (3)
fo
s.t. X(tv p) = f(ta x(t9 P), P, h(x(t5 P), P)), vVt e (t07 tf]5 (4)
X(to, p) = fo(p). (5)
p €P CR™, (6)

This includes numerical optimal control problems for which the
control input can be parameterized by a finite-dimensional pa-
rameter vector. A particular example is control and optimiza-
tion of bioreactor models using dynamic flux balance analysis
(DFBA) (Hoffner, Harwood, & Barton, 2013; Mahadevan, Edwards,
& Doyle, 2002). Derivative-based numerical methods to solve this
optimization problem require, as the name suggests, derivatives of
the cost function J with respect to the parameter vector p. For dif-
ferentiable problems, these can be evaluated via a solution of the
forward sensitivity system (Feehery, Tolsma, & Barton, 1997; Hart-
man, 2002) or the adjoint system (Cao, Li, Petzold, & Serban, 2003).
In this work the function h is locally Lipschitz continuous but not
continuously differentiable. Therefore, the vector field f in Eq. (1)
is also not necessarily continuously differentiable. For nondifferen-
tiable optimization problems many complications arise such as the
formulation of optimality conditions and the definition and com-
putation of descent directions. One successful concept in this con-
text is Clarke’s generalized gradient (Clarke, 1990). In this work,
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an element of Clarke’s generalized gradient is computed using Nes-
terov’s lexicographic derivative (Nesterov, 2005). In addition to the
nondifferentiability of the problem, the solution of (1) might not
exist for all time t € [to, tf] and therefore it is in general difficult
to know a priori if the function J can be evaluated at p.

1.1. Nonsmooth sensitivity analysis

The main contribution of this paper is the computation of an
element of the generalized gradient of the objective function,
which is sufficient information for many nonsmooth optimization
methods. It presents the first result for the type of dynamic systems
considered here. In Pang and Stewart (2009) the authors computed
an element of a linear Newton approximation, which is a superset
of the generalized gradient, for differential variational inequalities.
A similar formulation for dynamic systems with a linear program
embedded is conceivable. But, as discussed in Khan and Barton
(2014), the linear Newton approximation does not satisfy certain
properties, for example a linear Newton approximation containing
the origin is not sufficient for global optimality of a convex
function, and is therefore not suitable for our purposes. See Khan
and Barton (2014) for illustrative examples.

Computation of an element of the generalized gradient is a
difficult problem in practice. For piecewise differentiable functions
with a factorable representation, methods based on automatic
differentiation have been developed recently (Griewank, 2013;
Khan & Barton, 2013). This approach is not practical for our
purposes since explicit representation of the optimal solution
value via parametric linear programming (Bemporad, Borrelli, &
Morari, 2002) becomes intractable as the size of the linear program
increases. In contrast, the approach presented here only requires
the solution of a small number of linear programs.

It is known from parametric programming that the optimal
solution value of a linear program as a function of the right hand-
side of the constraints is a convex function and that the optimal
dual solution set corresponds to the subdifferential. The following
example illustrates that a linear Newton approximation based on
an arbitrary choice of subgradient may not yield an element of the
generalized gradient of the cost function.

Example 1.1. Consider the ODE!

x(t,p) = (1 = bh(t, x(t,p)), Vte(0,2]
x(0,p)=p
with p € R and
h(t,z) = min vy + v,
veR?
s.t. vy —vy = (1 — t)Z,
v > 0.

The unique solution of this ODE is given by

™52 0-0-0" o0 <t<l1,

forl1 <t<2.

X(t,p) ="
pe 5 (+(1-0%)

The map & = x(2,-) is continuously differentiable for all
P € R, hence the generalized gradient at p = 0 is given by
0&(0) = {1}. Since an analytical solution rarely exists, in general

we have to resort to numerical methods to evaluate an element
of the generalized gradient. Computation of a linear Newton

1 The ODE can be written in the form of (1)-(2) by adding a second state
representing time, i.e., X, (t, p) = 1, x2(0, p) = 0, which is omitted to simplify the
presentation.

approximation is one approach, which is applied here. The dual
problem of the embedded LP is

h(t,z) = max (1 —t)zA
LER
sit. —1<A<1.

Based on the results shown in the following section, it can be
shown that a generalized gradient of the right-hand side function
fe =f(t,) = (1 —t)h(t, -) along the solution x(-, 0) is given by

e (x(t,0) = {1 —0?r: 2 e[-1,1]}, Vte(0,2]

and is non-singleton for almost all times. In contrast, the
generalized gradient of £ at p = 0 is a singleton. An element of
a linear Newton approximation (Pang & Stewart, 2009) of x(t, -) at
p = 0 is given by the solution of the ODE

dr'x
?(t, 0) = A(t)I'x(t,0), Vte (0,2],
I'x(0,0) =1,

for any Lebesgue integrable function A : (0,2] — R such that
A(t) € 8f:(x(t, 0)) foralmost all t € (0, 2]. For A(t) = A(t)(1—t)?
with A(t) = 1 for all ¢, it follows that I"'x(2, 0) = e'/3 which is not
an element of the generalized gradient of £ at p = 0. In contrast,
if we choose A(t) = 1fort < 1and A(t) = —1fort > 1, the
solution of the above ODE system yields the unique element of the
generalized gradient of &€ at p = 0. Hence, the choice of the element
of the generalized gradient of the right-hand side is important. One
interpretation of the result presented in this work is providing an
approach which determines a correct element of the dual solution
set for each time along a trajectory.

1.2. Dynamic flux balance analysis

Dynamic flux balance analysis provides a platform for detailed
design, control and optimization of biochemical process technolo-
gies. Itis a promising modeling framework that combines genome-
scale metabolic network analysis with dynamic simulation of the
extracellular environment. A DFBA model assumes that the intra-
cellular fluxes are at equilibrium with the extracellular environ-
ment. The resulting underdetermined linear stoichiometric model
is solved under the assumption of a cellular objective such as
growth rate maximization. The model of the metabolism is cou-
pled with the dynamic mass balance equations of the extracellu-
lar environment via expressions for the rates of substrate uptake
and product excretion, which imposes additional constraints on
the linear program defined by growth rate maximization of the
cell. For example, simulation of batch or fed-batch yeast fermen-
tation requires a description of the dynamics of the reactor, which
are ODEs, and a model of the microbial agent represented by a lin-
ear program. The concentrations of the extracellular species evolve
according to the dynamics of the differential equations. Mean-
while, the model of the microbial metabolism is used to predict the
growth rate and production of ethanol and other metabolites that
are of value, based on the consumption of sugars such as glucose
and xylose from the extracellular environment. Existing optimiza-
tion case studies using DFBA models in the literature do not ad-
dress the nondifferentiable nature of the problem. Optimal control
of genome-scale (more than 1000 LP variables) DFBA models has
been limited due to the increased computation time for large mod-
els (Hjersted, Henson, & Mahadevan, 2007). In Hjersted and Hen-
son (2006), Hjersted and Henson studied fed-batch optimization of
a bioreactor with a small-scale model of yeast metabolism. The op-
timization problem was discretized temporally and the resulting
mathematical program with equilibrium constraints (MPEC) was
solved. This approach becomes intractable as the size of the FBA
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