
Automatica 63 (2016) 221–234

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

A randomized approximation algorithm for the minimal-norm
static-output-feedback problem✩

Yossi (Joseph) Peretz 1

Computer Sciences Department, Jerusalem College For Technology, Lev Academic Center P.O.B. 16031, Jerusalem, Israel

a r t i c l e i n f o

Article history:
Received 27 January 2014
Received in revised form
26 April 2015
Accepted 23 August 2015

Keywords:
Linear systems
State-space representation
Feedback-stability
Static output feedbacks
Pole-placement
Approximation algorithms
Randomized algorithms

a b s t r a c t

A new randomized algorithm is suggested, for extracting static-output-stabilizing-feedbacks, with
approximately minimal-norm, for LTI systems. The algorithm has two similar stages, where in the first
one the feasibility problem is solved, and in the second one the optimization problem is solved. The
formulation is unified for the feasibility and for the optimization problems, as well as for continuous-time
or discrete-time systems. The method is demonstrated by applying it to the hard (conjectured to be NP-
hard) problem of the minimal-gain static-output-stabilizing-feedback, and to the hard (conjectured to be
NP-hard) problem of regional pole-placement via static-output-feedback in non-convex or unconnected
regions. A proof of convergence (in probability) that captures the two rounds of the algorithm is given,
and complexity analysis is provided, under some mild assumptions.

© 2015 Published by Elsevier Ltd.

1. Introduction

The problem of finding necessary and sufficient conditions, for
the existence of static-output-stabilizing-feedbacks (SOF), which
can be computed in reasonable (i.e. polynomial) time, has a long
history (see Syrmos, Abdallah, Dorato, and Grigoradis (1997) for
a survey). The problem is known to be NP-hard if structural-
constraints or bounds are imposed on the entries of the controllers
(see Blondel and Tsitsiklis (1997); Nemirovskii (1993)), but
unknown and suspected to be NP-hard, otherwise. Obviously, in
real-life, when one searches aminimal-norm SOF, it is always done
in a bounded region. Thus, minimal-gain SOFwith bounded entries
is obviously NP-hard problem. Pole-placement and simultaneous
stabilization via SOF are also NP-hard (see Fu (2004) and Blondel
and Tsitsiklis (1997), resp.). Thus, practically, one should expect
that only approximation or randomized algorithms will be able to
cope with these problems.

Many problems can be reduced to the constrained SOF problem.
These include the reduction of the minimal-degree dynamic-
feedback problem, robust or decentralized stability via static-
feedback and PID controllers to this problem (see Blondel and
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Tsitsiklis (1997);Mesbahi (1999) and Zheng,Wang, and Lee (2002),
resp.). A formulation of the reduced-order H∞ filter problem as
constrained SOFproblem, is considered inBorges, Calliero, Oliveira,
and Peres (2011).

The solution of the SOF problem is important for systemswhich
models structural dynamics, and naturally needs a static feedback
that can be built into the structure (e.g. buildings and bridges
subject to earthquakes, strong winds and unpredicted dynamic
loadings—see Spencer and Sain (1997); Xu and Teng (2002); Yang,
Lin, and Jabbari (2003) and Polyak, Khlebnikov, and Shcherbakov
(2013), where it is shown that optimal SOF’s, although costless,
may achieve similar performance as optimal dynamic feedbacks).
Note that the long-term memory of dynamic feedbacks is useless
in the case of unpredicted dynamic loadings.

The suggested algorithm that will be called the Ray-Shooting
(RS) algorithm, does not make use of any heavy tools like
Semi-Definite Programming (SDP) or Linear, or Bilinear Matrix
Inequalities (LMI’s and BMI’s resp.). Note that the existence of
BMI’s solutions is NP-hard problem (see Toker and Özbay (1995)).
The least-rank dynamic-output-feedback problem is considered
in Mesbahi (1999) using SDP. This can be solved with the RS
method, by applying a Binary-Search on the rank and using its
formulation as a SOF problem, with much less computational
efforts and without the need of finding any feasible initial point.
Also, the problem of optimal abscissa via SOF can be solved with
the RS method, by applying Binary-Search on the abscissa.
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In Vidyasagar and Blondel (2001) the problem of a common
Lyapunov matrix, and the problems of static-stability and simul-
taneous static stability, are treated, using the probabilistic method
(i.e. the ‘‘generate and check’’ strategy). The article deals with the
problem of counting the minimal number of samples that guar-
antee a given probability threshold of success, through the use
of the Chernoff bound and bounds on the Vapnik–Chervonenkis
dimension (VC-dimension) of the problem, without knowing the
specific distribution of successful examples and without using the
structure of the given system (i.e. the specific A, B, C matrices). In
this article, it is shown that at least max
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samples are needed to guarantee with 1 − δ confidence that the
empirical probability is ϵ uniformly-close to the exact probabil-
ity (with ϵ, δ ∈ (0, 1)), where d is the VC-dimension of the
problem, where for the SOF problem it is shown there that d ≤

4p2 ln
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(p being the state-space dimension). Thus, for

p = 10, ϵ = δ = 0.01 at least 1.3538 · 1010 samples are needed
(d ≤ 3093).

One way to overcome this ‘‘curse of dimensionality’’ is
presented in Tempo, Calafiore, andDabbene (2005) and Tempo and
Ishii (2007). Concerning the problem of Robust Stability via SOF, it
is proved in Tempo et al. (2005) that the empirical performance
measure is ϵ1 probability-close to the exact performance with
probability at least 1 − ϵ2 and confidence at least 1 − δ, if one
takes M ≥

ln(2/δ)
ln(1/(1−ϵ2))

samples of the controller parameters and

N ≥
ln

4M
δ


2ϵ21

samples of the system uncertainty (ϵ1, ϵ2, δ ∈ (0, 1)).

Thus, for ϵ1 = ϵ2 = δ = 0.01 one needs M ≥ 528 samples
of the controller parameters and N ≥ 61, 303 samples of the
system uncertainty, which results in 32, 367, 984 evaluations of
the performance measure. The RS algorithm seems to practically
overcome this obstacle and at least suggests another way to cope
with this problem.

The structure of the article is as follows: in Section 2, we set
notions, definitions, and give some lemmas. In Section 3, we in-
troduce a lemma which provides the basis for the RS algorithm.
We next introduce an approximation algorithm that applies the
RS method again, in order to find a minimal-gain SOF. In Sec-
tion 4, we consider the Alternating-Projections (AP) algorithm in-
troduced in Yang and Orsi (2006), which solves the problem of
pole-placement via static-feedback, and we revise this algorithm
with some improvement. We also consider the Hide-And-Seek
algorithm, introduced in Bélisle (1992), which solves the global
optimization problem of continuous functions on compact do-
mains. In Section 5, we compare the results of the RS algorithm
with the algorithms: AP, Hide-And-Seek, Mixed LMI/Randomized
Method (see Arzelier, Gryazina, Peaucelle, and Polyak (2010)), HI-
FOO (see Gumussoy, Henrion, Millstone, and Overton (2009)) and
HINFSTRUCT (see Apkarian and Noll (2006)). In Section 6, we re-
vise a proof for the convergence in probability of the RS algorithm
and discuss its complexity under some reasonable assumptions. In
Section 7, we conclude with some remarks concerning the com-
parison between the algorithms and discuss the limitations of the
RS method.

2. Preliminaries

The complex, real and rational fields are denoted by C, R, Q,
resp. We denote by D the open unit disk and by C− the open left
half-plane. For Ω ⊆ C we denote by Ω the set C\Ω . For z ∈ C we
denote by ℜ (z), ℑ (z) its real and imaginary parts, resp. By R+ we
denote the set of nonnegative real numbers. For a set S ⊂ Cp×1, we
denote by Span (S) the linear span of S. For a square matrix Z , we
denote by σ (Z) the spectrum of Z . For a Cp×q matrix Z , we denote
by Z∗ its conjugate transpose, andby Zi,j its (i, j)’th element or block

element. A square matrix Z is said to be non-negative (denoted
as Z ≥ 0) if Z∗

= Z and v∗Zv ≥ 0 for any v. A non-negative
matrix Z is said to be strictly non-negative (denoted as Z > 0) if
v∗Zv > 0 for any v ≠ 0. For two square matrices Z,W we write
Z ≥ W (Z > W ) if Z − W ≥ 0 (resp., if Z − W > 0). For a
matrix Z ∈ Cp×q, we denote by Z+ the Moore–Penrose Pseudo-
inverse (see Karlheinz (1994); Piziak and Odell (2007)). By LZ , RZ
we denote the orthogonal projections Iq − Z+Z and Ip − ZZ+ resp.,
where It denotes the identity t × t matrix. Note that Z+Z and ZZ+

(as well as LZ and RZ ) are self-adjoint and unitarily diagonalizable
with {0, 1} eigenvalues. In what follows, we assume that the given
systems have the form:

Σ (x) = Ax + Bu
y = Cx (1)

whereΣ (x (t)) = ẋ (t) for continuous-time systems andΣ (xk) =

xk+1 for discrete-time systems, where A ∈ Cp×p, B ∈ Cp×q, C ∈

Cr×p. Amatrix Z in the discrete-time context, is said to be α-stable,
for 0 < α < 1, if any eigenvalue λ ∈ σ (Z) satisfies |λ| < α. A
pair (A, B) is said to be α-stabilizable, if there exists K for which
E = A − BK is α-stable or, equivalently, if there exists X for which
E = A − BB+X is α-stable. Note that (A, B) is α-stabilizable if
and only if rank


λI − A B


= p, for any λ satisfying |λ| ≥ α.

Equivalently, (A, B) is α-stabilizable if and only if there exist X and
P, R > 0 for which

P −


E∗

α


P

E
α


= R. (2)

Similarly, a square matrix Z in the continuous-time context is said
to be α-stable, for α > 0, if any eigenvalue λ ∈ σ (Z) satisfies
ℜ (λ) < −α. Thus, (A, B) is α-stabilizable if and only if there exist
X and P, R > 0 for which

(E + α)∗ P + P (E + α) = −R, (3)

where E = A− BB+X . The last two examples of restricted stability
region, can be generalized as follows. Let Ω0 be D or C−. Let Ω ⊂

Ω0 be any simply connected region with smooth boundary. Let
ϕ : Ω0 → Ω be a conformal, one-to-one mapping, in which
its existence is guarantied by the Riemann Mapping Theorem (see
W. Rudin Rudin (1987), Theorem 14.8, p. 283). Let ϕ−1

: Ω →

Ω0 denote its inverse and assume that the substitution ϕ−1 (Z) is
meaningful for matrix Z in some open set and that ϕ−1 (Z) v =

ϕ−1 (λ) v for any eigenvalue λ and related eigenvector v of Z . For
example, ifϕ−1 (z) =

p(z)
q(z) , where p (z) , q (z) are polynomials then,

a substitution of a square matrix Z into ϕ−1 (z) will be calculated
as: p (Z) q (Z)−1

= q (Z)−1 p (Z), where we assume that q (Z) is
invertible. Let λ be an eigenvalue of Z with eigenvector v, then
p (Z) v = p (λ) v and q (Z)−1 v =

1
q(λ)

v implying ϕ−1 (Z) v =

ϕ−1 (λ) v. Now, a square matrix Z is said to be Ω-stable, if σ (Z) ⊂

Ω , and we write S
p×p
Ω for the set of all Ω-stable p × p matrices. A

pair (A, B) is said to be Ω-stabilizable, if there exists X for which
E = A − BB+X is Ω-stable. One can prove that (A, B) is Ω-
stabilizable if, and only if rank


λI − A B


= p for any λ ∈ Ω . The

last is equivalent, in the discrete-time context, to the existence of
X and P, R > 0, such that

P − ϕ−1 (E)∗ Pϕ−1 (E) = R. (4)

In the continuous-time context, (A, B) isΩ-stabilizable if, and only
if there exist X and P, R > 0 for which

ϕ−1 (E)∗ P + Pϕ−1 (E) = −R. (5)

Related inequalities for robust pole-placement in LMI regions and
H∞ design with pole-placement in LMI regions, are considered
in Chilali and Gahinet (1996) and Chilali, Gahinet, and Apkarian
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