ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 49-6 (2016) 280285

Teaching Task Scheduling
as Multivariable Cascade Control

Alberto Leva * Federico Terraneo **

* Politecnico di Milano, Dipartimento di Elettronica, Informazione e
Bioingegneria (e-mail: alberto.leva@polimi.it)
** Research assistant at the Dipartimento di Elettronica, Informazione e
Bioingegneria (e-mail: federico.terraneo @polimi.it)

Abstract: This paper presents a didactic activity belonging to a long-term project, aimed at complement-
ing the culture of computer engineering students with a solid knowledge of systems and control theory
and methods. The use of control to govern and optimise the behaviour of computing systems is felt in the
computer engineering community as a necessity. The proposed activity — that refers to task scheduling
— responds to this need, guiding the necessary cultural enrichment and avoiding possible errors and
misinterpretations, so as to foster a deeper cooperation of the computer and the control communities.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Control education, computing systems, scheduling algorithms, cascade control,

discrete-time systems.

1. INTRODUCTION

The material and the activity presented in this paper belong to a
long-term research and education project, aimed at control and
control-based design of computing system components. On the
research side, the main goal is to improve the performance and
the sustainability of computing systems, see Leva et al. (2012).
From the education standpoint, on which we here focus, the aim
is to enrich the culture of computer engineering students with a
purpose-specific, yet methodologically grounded knowledge of
the systems and control theory.

The previous paper (Leva, 2015) provided an overview on the
matter, also providing references to research works that ground
the didactic activity, and are not repeated here for brevity. This
work concentrates on the relevant problem of task scheduling,
that is here formulated as a multivariable cascade control one in
the discrete time domain. Synthesising the controller requires
dealing with stability and performance in a linear but time-
varying context, while realising the obtained control law in-
volves nontrivial issues, particularly for the management of a
variable task pool.

The activity here described is a good way for computer engi-
neering students to get a firm grasp not only on some control
techniques, but more in general, on how control ideas can help
solve relevant problems if these are formulated properly in
system-theoretical terms, and if control design is carried out
on dynamic models instead of going directly to algorithms.

At the Politecnico di Milano, computer engineering students
take a ten credits basic course on systems and control, in the
second semester of the second BSc year. They can then choose
some specialised courses, but none is explicitly focused on
the application of systems and control methods to their core
domain—whence the need for activities like the one presented
herein. This year, the activity will be offered as part of a PhD
course, with the purpose of finding the best organisation and
communication strategy with the help of the students feedback.

If the result is successful, the possibility can be considered to
move the activity — together with the companion ones sum-
marised in Leva (2015) — down to the MSc level, which is most
likely their natural collocation.

The paper is organised as follows. Section 2 briefly reviews
some related work, thereby further motivating the presented
research. Sections 3 through 5 present the methodological part
of the work, while Section 6 describes the implementation of
the designed controller, which is of particular importance when
dealing with a computer-centric audience. Section 7 deals with
the organisation of the didactic activity, and the underlying
pedagogy. Finally, Section 8 draws some conclusions, and
sketches out future work.

2. RELATED WORK AND MOTIVATION

The topic “control of computing systems” has received an
increasing attention in the last decades. The importance of the
matter was very clear in the case where computing serves for
control in the classical sense of the term, and an incorrect use of
computational resources may cause control failures (Stankovic
et al., 1999; Branicky et al., 2002).

Some time ago, however, control started gaining interest also
for optimising the operation of computing systems that have
nothing to do with regulating loops. Besides quite general and
high-level treatises such as Shor et al. (2000), works like Ab-
delzaher et al. (2003), centred on Quality of Service issues,
were in those years one of the most relevant trends, particularly
for the management of distributed middleware (Li and Nahrst-
edt, 2001) and web servers (Robertsson et al., 2004).

In the following years, the idea of using control techniques to
make computing systems “adaptive” —i.e., capable of maintain-
ing certain properties in the presence of unforeseen ambient
variations — gained importance (Diao et al., 2005; Huebscher
and McCann, 2008; Salehie and Tahvildari, 2009; Filieri et al.,
2011). At present, research extends to operating systems (Leva
et al.,, 2012), resource management, especially with energy

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.07.190

Alberto Leva et al. / IFAC-PapersOnLine 49-6 (2016) 280-285 281

awareness (Beloglazov et al., 2012), cloud control (Klein et al.,
2014; Ghezzi et al., 2015), self-adaptive software (De Lemos
et al., 2013; Arcelli et al., 2015), and more; reviews and com-
parisons of alternative approaches to so vast a field can be found
in works like Maggio et al. (2012) and Patikirikorala et al.
(2012).

Moving to the scope of this paper, the “control of comput-
ing systems” topic has nowadays started the transition from a
research only to a teaching subject. There are books suitable
for such a purpose (Hellerstein et al., 2004; Janert, 2013), and
some include a “minimal control course” targeted to a computer
engineer reader. Quoting from the presentation of Janert (2013),
“feedback is ideal for controlling large, complex systems, but
its use in software engineering raises unique issues; this book
provides basic theory and lots of practical advice for program-
mers with no previous background in feedback control”.

This situation requires attention from the control community.
In the absence of a solid pedagogy, well grounded on the
systems theory, there is the risk that control is viewed basically
as “yet another library of algorithms”. For example, most
computer-centric works on control introduce the basic regulator
structures like the PID, but hardly any mention is made on
selecting model- or problem-specific control laws, let alone
on structuring a control scheme. More in general, looking at
control with just the mentality of a programmer, may lead to
miss the real cultural treasure, i.e., the capability of designing
and assessing based on dynamic models.

Despite choosing the best way to share control culture with
computer scientists is an open challenge under several view-
points, no doubt computer people are getting really interested
in control, and students in that domain need educating properly
on this subject. Thus, in the opinion of the authors, we definitely
must be there; the activity presented in the following is an
attempt of providing such a presence.

3. MODEL OF THE SYSTEM UNDER CONTROL

A pool of task is to be scheduled on a single processor (CPU).
We assume a preemptive context, which means that the sched-
uler can interrupt the running task and give the CPU to another
one. The pool of task is not constant, as some tasks can termi-
nate and leave the system, while new ones can arrive.

Tasks can be classified based on their desired use of the CPU.
Some tasks are inferactive: they need to respond to the user
fast enough, thus to receive the CPU frequently enough. Others
are batch: these just have to carry out a given workload within
a deadline, while the detailed history of their CPU use is
not relevant. Others again are periodic, and can be viewed
as repeating batch ones. Others are event-awakened, like for
example the driver of a mouse; these need the CPU as quickly
as possible when the triggering event occurs, but differently
from interactive ones, not on a regular basis. In a nutshell,
and informally, the scheduler has to maximise the CPU use by
the pool, while satisfying the desires of each task as much as
possible.

Since pool variations are sporadic with respect to the schedul-
ing time scale, one can first address the problem for a constant
pool, and then manage task arrivals and terminations. Writing
an adequate model is not trivial for the students. Computer
engineering ones typically find it hard to isolate the controlled
phenomenon — tasks accumulate CPU time “more or less” as

dictated by the scheduler — and often come up with queue net-
works or analogous ideas. Students more acquainted to physics
in the strict sense of the term, on the other hand, easily get
lost in identifying the quantities themselves that describe the
system.

Coming to the proposed solution, we preliminarily define the
round as the time between two subsequent scheduler interven-
tions, and we also define (the bold face denotes vectors and
matrices)

e 7(k) € RV, the CPU times actually used by the tasks in
the k-th round, measured after their execution;

e 7.(k) € R, the time duration of the k-th round,;

e pi(k) € RV, the times to completion (remaining needed
CPU times) of the tasks at the beginning of the k-th round
(4o for the task that do not have a duration);

e n(k) € N, the number of tasks that the scheduler considers
for activation at the k-th round;

e b(k) € R™K) the bursts, i.e., the CPU times allotted to the
tasks at the beginning of the k-th round;

e Sb(k) € R"¥, any disturbance (voluntary CPU yield,
preemption interrupt latency, and so on) making T¢(k)
differ from b(k).

Given this, and denoting by ¢ the time since the system initiali-
sation, an adequate model reads

(k) = Sok—1)-b(k— 1)+ Sb(k—1)

(k) =Lixn - (k= 1)

pe(k) = max (py(k—1) =Sg(k—1)b(k—1) = 6b(k— 1), 0)
(k)

ey
where S (k) € X is an N x n(k) switching matrix, with elements
equal to zero or one, that determines which tasks are considered
in each round (notice that this allows extensions to multiple
CPUs). By choosing n(k) and/or Sgk), (1) can be made to
describe many well known scheduling policies. To give just a
few examples,

e n =1, aN-periodic S5 (-), Sg (k) #Sg(k—1),2 <k <N
and a constant b(k), produce Round Robin;

e n=1and Ss(-) chosen to assign the CPU to the task with
the minimum row index and a positive py, give First Come
First Served;

e n=1andaSq(-) selecting the task with the minimum p,
yield Shortest Remaining Time First.

Other policies can be described, and it is interesting for the
students to distinguish open-loop ones, like Round Robin, from
closed-loop ones. However, once a model is available for the
system in the absence of control — which is proven by its ability
to represent open-loop policies — the question arises, why the
said model cannot be used to synthesise a scheduling policy
in the form of a (MIMO) controller. A possible solution is
discussed in the following.

4. CONTROL STRUCTURING

Observe that all the existing policies just mentioned, and virtu-
ally any one used in operating systems, have n = 1, i.e., have
the scheduler gain control after the execution of each task.
This is not necessary: one can determine all the b(k) vector

Download English Version:

https://daneshyari.com/en/article/710958

Download Persian Version:

https://daneshyari.com/article/710958

Daneshyari.com

https://daneshyari.com/en/article/710958
https://daneshyari.com/article/710958
https://daneshyari.com

