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a b s t r a c t

In this paperwe study how to shape temporal pulses to switch a bistable system between its stable steady
states. Our motivation for pulse-based control comes from applications in synthetic biology, where it
is generally difficult to implement real-time feedback control systems due to technical limitations in
sensors and actuators. We show that for monotone bistable systems, the estimation of the set of all
pulses that switch the system reduces to the computation of one non-increasing curve. We provide
an efficient algorithm to compute this curve and illustrate the results with a genetic bistable system
commonly used in synthetic biology. We also extend these results to models with parametric uncertainty
and provide a number of examples and counterexamples that demonstrate the power and limitations
of the current theory. In order to show the full potential of the framework, we consider the problem
of inducing oscillations in a monotone biochemical system using a combination of temporal pulses and
event-based control. Our results provide an insight into the dynamics of bistable systems under external
inputs and open up numerous directions for future investigation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we investigate how to switch a bistable system
between its two stable steady states using external input signals.
Our main motivation for this problem comes from synthetic
biology, which aims to engineer and control biological functions
in living cells (Brophy & Voigt, 2014). Most of current research in
synthetic biology focuses on building biomolecular circuits inside
cells through genetic engineering. Such circuits can control cellular
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functions and implement new ones, including cellular logic gates,
cell-to-cell communication and light-responsive behaviours. These
systems have enormous potential in diverse applications such as
metabolic engineering, bioremediation, and even the energy sector
(Purnick & Weiss, 2009).

Several recent works (Menolascina, Di Bernardo, & Di Bernardo,
2011; Milias-Argeitis et al., 2011; Uhlendorf et al., 2012) have
showcased how cells can be controlled externally via computer-
based feedback and actuators such as chemical inducers or light
stimuli (Levskaya, Weiner, Lim, & Voigt, 2009; Mettetal, Muzzey,
Gomez-Uribe, & van Oudenaarden, 2008). An important challenge
in these approaches is the need for real-time measurements,
which tend to be costly and difficult to implement with current
technologies. In addition, because of technical limitations and the
inherent nonlinearity of biochemical interactions, actuators are
severely constrained in the type of input signals they can produce.
As a consequence, the input signals generated by traditional
feedback controllers (e.g. PID or model predictive control) may
be hard to implement without a significant decrease in control
performance.

In this paper we show how to switch a bistable system without
the need for output measurements. We propose an open-loop
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control strategy based on a temporal pulse of suitable magnitude
µ and duration τ :

u(t) = µh(t, τ ), h(t, τ ) =


1 0 ≤ t ≤ τ ,
0 t > τ.

(1)

Our goal is to characterise the set of all pairs (µ, τ) that can switch
the system between the stable steady states and the set of all
pairs (µ, τ) that cannot. We call these sets the switching sets and
a boundary between these sets the switching separatrix. The pairs
(µ, τ) close to the switching separatrix are especially important in
synthetic biology applications, as a large µ or a large τ can trigger
toxic effects that slow down cell growth or cause cell death.

In a previous paper (Sootla, Oyarzún, Angeli, & Stan, 2015),
we showed that for monotone systems the switching separatrix
is a monotone curve. This result was therein extended to a class
of non-monotone systems whose vector fields can be bounded
by vector fields of monotone systems. This idea ultimately leads
to robustness guarantees under parametric uncertainty. These
results are in the spirit of Gennat and Tibken (2008); Ramdani,
Meslem, and Candau (2009, 2010), where the authors considered
the problem of computing reachability sets of a monotone system.
Some parallels can be also drawn with Chisci and Falugi (2006);
Meyer, Girard, and Witrant (2013), where feedback controllers for
monotone systems were proposed.
Contributions. In the present paper we provide the first complete
proof of our preliminary results in Sootla, Oyarzún, Angeli,
and Stan (2015) and extend them in several directions. We
formulate necessary and sufficient conditions for the existence of
the monotone switching separatrix for non-monotone systems.
Although it is generally hard to use this result to establish
monotonicity of the switching separatrix, we use it to prove the
converse. For example, we show that for a bistable Lorenz system
the switching separatrix is not monotone. We then generalise the
main result of Sootla et al. (2015) by providing conditions for the
switching separatrix to be a graph of a function.We also discuss the
relation between bifurcations and the mechanism of pulse-based
switching, which provides additional insights into the switching
problem. We use this intuition to show and then explain the
failure of pulse-based control on an HIV viral load control problem
(Adams, Banks, Kwon, & Tran, 2004). We proceed by providing
a numerical algorithm to compute the switching separatrices for
monotone systems. The algorithm can be efficiently distributed
among several computational units and does not explicitly use the
vector field of themodel. We evaluate the computational tools and
the theory on the bistable LacI–TetR system, which is commonly
referred to as a genetic toggle switch (Gardner, Cantor, & Collins,
2000).

We complement our theoretical findings with several observa-
tions that illustrate limitations of the current theory and highlight
the need for deeper investigations of bistable systems. For exam-
ple, we show that for a toxin–antitoxin system (Cataudella, Snep-
pen, Gerdes, & Mitarai, 2013), the switching separatrix appears to
bemonotone, even though the systemdoes not appear to bemono-
tone. Finally, in order to demonstrate the full potential of pulse-
based control, we consider the problem of inducing an oscillatory
behaviour in a generalised repressilator system (Strelkowa & Bara-
hona, 2010).
Organisation. In Section 2 we cover the basics of monotone sys-
tems theory, formulate the problem in Section 2.1, and provide an
intuition into the mechanism of pulse-based switching for mono-
tone systems in Section 2.2. We also provide some motivational
examples for the development of our theoretical results, which we
present in Section 3. In Section 4 we derive the computational al-
gorithm and evaluate it on the LacI–TetR system. In Section 5, we
provide examples, counterexamples and an application of induc-
ing oscillations in a generalised repressilator system. The proofs
are found in the Appendix.

Notation. Let ∥ · ∥2 stand for the Euclidean norm in Rn, Y ∗ stand
for a topological dual to Y , X \ Y stand for the relative complement
of X in Y , int(Y ) stand for the interior of the set Y , and cl(Y ) for its
closure.

2. Preliminaries

Consider a single input control system

ẋ = f (x, u), x(0) = x0, (2)

where f : D ×U→ Rn, u : R≥0 → U, D ⊂ Rn, U ⊂ R and u(·)
belongs to the space U∞ of Lebesgue measurable functions with
values from U. We say that the system is unforced, if u = 0. We
define the flow map φf : R × D × U∞ → Rn, where φf (t, x0, u)
is a solution to the system (2) with an initial condition x0 and a
control signal u. We consider the control signals in the shape of a
pulse, that is signals defined in (1) with nonnegative µ and τ .

In order to avoid confusion, we reserve the notation f (x, u) for
the vector field of non-monotone systems, while systems

ẋ = g(x, u), x(0) = x0, (3)
ẋ = r(x, u), x(0) = x0, (4)

denote so-calledmonotone systems throughout the paper. In short,
monotone systems preserve a partial order relation in initial
conditions and input signals. A relation≽x is called a partial order if
it is reflexive (x≽x x), transitive (x≽x y, y≽x z implies x≽x z), and
antisymmetric (x≽x y, y≽x x implies x = y). We define a partial
order through a cone K ⊂ Rn as follows: x≽x y if and only if
x − y ∈ K . We write x ⋡x y, if the relation x≽x y does not hold;
x≻x y, if x≽x y and x ≠ y; and x≫x y, if x − y ∈ int(K). Similarly
we define a partial order on the space of signals u ∈ U∞: u≽u v,
if u(t) − v(t) ∈ K for all t ≥ 0. We write u≻u v, if u≽u v and
u(t) ≠ v(t) for all t ≥ 0. Finally, a set M is called p-convex if
for all x, y in M such that x≽x y, and all λ ∈ (0, 1) we have that
λx+ (1− λ)y ∈ M .

Definition 1. The system (3) is calledmonotone onDM×U∞ with
respect to the partial orders≽x, ≽u, if for all x, y ∈ DM and u, v ∈
U∞ such that x≽x y and u≽u v, we have φg(t, x, u)≽x φg(t, y, v)
for all t ≥ 0. If additionally, x≻x y, or u≻x v implies that
φg(t, x, u)≫x φg(t, y, v) for all t > 0, then the system is called
strongly monotone.

In general, it is hard to verify monotonicity of a system with
respect to an order other than an order induced by an orthant
(e.g., positive orthant Rn

≥0). Hence throughout the paper, by a
monotone system we actually mean a monotone system with re-
spect to a partial order induced by an orthant. A certificate formono-
tonicity with respect to an orthant is referred to as Kamke–Müller
conditions (Angeli & Sontag, 2003).

Proposition 2 (Angeli & Sontag, 2003). Consider the system (3),
where g is differentiable in x and u and let the sets DM , U
be p-convex. Let the partial orders ≽x, ≽u be induced by PxRn

≥0,
PuRm
≥0, respectively, where Px = diag((−1)ε1 , . . . , (−1)εn), Pu =

diag((−1)δ1 , . . . , (−1)δm) for some εi, δi in {0, 1}. Then

(−1)εi+εj
∂gi
∂xj
≥ 0, ∀ i ≠ j, (x, u) ∈ cl(DM)×U

(−1)εi+δj
∂gi
∂uj
≥ 0, ∀ i, j, (x, u) ∈ DM ×U

if and only if the system (3) is monotone on DM ×U∞ with respect
to≽x,≽u.

If we consider the orthantsRn
≥0,R

m
≥0, then the conditions above are

equivalent to checking if for all x≼x y such that xi = yi for some i,
and all u≼u v we have gi(x, u) ≤ gi(y, v).
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