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a b s t r a c t

The coverage control problem for a network of heterogeneousmobile sensorswith first-order dynamics is
addressed in this paper. The goal of the problem is to minimize a coverage cost function which is defined
to be the largest arrival time from the mobile sensor network to the points on a circle. The heterogeneity
of the network is considered in terms of different maximum velocities of the mobile sensors, which in
turn imposes different constraints on the sensors’ control inputs. A necessary and sufficient condition for
the global minimization of the coverage cost function is firstly derived via a partition of the circle. Then, a
distributed coverage control schemewith input saturation is developed to drive the sensors to the optimal
configuration such that the necessary and sufficient condition is satisfied. Under the distributed coverage
control scheme, the mobile sensors’ spatial order on the circle is preserved throughout the network’s
evolution and thus collision between mobile sensors is avoided. Finally, simulation results are presented
to illustrate the effectiveness of the proposed distributed control scheme.

© 2015 Published by Elsevier Ltd.

1. Introduction

This paper considers the coverage problem of a circle using a
network ofmobile sensorswithnon-identicalmaximumvelocities.
The goal is to deploy the sensors on the circle such that the largest
arrival time from the mobile sensor network to any point on the
circle is minimized. This problem is motivated by the facts that in
practice the assumption of mobile sensors with identical moving
speed often cannot be satisfied and events taking place in the mis-
sion domain only last for a finite time period (Bisnik, Abouzeid, &
Isler, 2007; Chen & Zhang, 2013; Seyboth, Wu, Qin, Yu, & Allgöwer,
2014).When the sensing range of mobile sensors is negligible with
respect to the length of a circle, reduction of the largest arrival time
from a sensor network to the points on the circle will increase the
possibility of capturing the events taking place on the circle before
they fade away.

In the past decade, much effort has been devoted to the cover-
age control problem for mobile sensor networks, where the goal is
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to drive the sensors to the optimal locations such that the overall
sensing performance of the sensor network is optimized (Cortés
& Bullo, 2005; Cortés, Martínez, Karatus, & Bullo, 2004; Hu & Xu,
2013; Lekien & Leonard, 2009; Sayyaadi & Moarref, 2011; Song,
Feng, Fan, & Wang, 2011; Song, Liu, Feng, Wang, & Gao, 2013;
Zhong & Cassandras, 2011). In Cortés et al. (2004), gradient descent
coverage control laws based onVoronoi partition are developed for
mobile sensors with limited sensing and communication capabil-
ities to minimize a locational optimization function. This work is
extended in Sayyaadi andMoarref (2011) to address an optimal de-
ployment problem, where the optimal deployment of mobile sen-
sors is achieved only when the sensors’ duty to capability ratios
reach a consensus. Assuming that all vehicles move at the same
constant speed, the maximum traveling time it takes for the vehi-
cles to arrive at an arbitrary point in a two-dimensional mission
domain is minimized in Hu and Xu (2013) via optimizing the vehi-
cles’ locations.

The coverage problem for mobile sensors in a one-dimensional
mission space has received increasing attention in recent years due
to its wide potential applications such as environmental boundary
monitoring and target tracking (Martínez & Bullo, 2006; Song
& Hong, 2011; Susca, Bullo, & Martínez, 2008). A benchmark
problem of one-dimensional coverage is the uniform coverage
problem in which the distance between neighboring agents is
required to reach a consensus. It has been shown that the sensing
performance of a homogeneous sensor network is maximized
when the sensors are uniformly deployed on a line or circle
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provided that the information density of all points on the line or
circle is identical (Carli & Bullo, 2009; Martínez, Bullo, Cortés, &
Frazzoli, 2007; Song & Feng, 2014). In contrast, when the density
of information is not uniform over the mission space, uniform
coverage is generally undesirable and more sensors should be
deployed in areas with high information density. In Leonard and
Olshevsky (2013), distributed coverage control laws are developed
for a network of mobile agents to optimally sense a nonuniform
fieldwhich is defined to be the density of information at each point
on a line.

Problems that are closely related to the coverage control
problem on a circle include circular formation and multi-agent
consensus. In the circular formation problem, a team of mobile
agents is required to form a formation on a circle and the desired
distance between neighboring agents is generally prescribed a
priori (El-Hawwary &Maggiore, 2013; Sepulchre, Paley, & Leonard,
2007, 2008; Wang, Xie, & Cao, 2013, 2014). In contrast, in the
coverage control problem the desired distance between sensors is
unknown beforehand and depends on the coverage cost function
to be optimized. The multi-agent consensus problem has been
studied extensively in literature in which all agents reach an
agreement on a variable of interest (Ding, 2013; Hong, Hu, &
Gao, 2006; Olfati-Saber, Fax, & Murray, 2007). Recently, the
consensus problem for multi-agent systems with input saturation
has attracted much interest due to the fact that input saturation
is ubiquitous in real-world applications (Li, Xiang, & Wei, 2011;
Meng, Zhao, & Lin, 2013; Ren, 2008; Su, Chen, Lam, & Lin, 2013;
Wang & Gao, 2013; Yang, Meng, Dimarogonas, & Johansson, 2014).

In this paper, a distributed coverage control scheme is devel-
oped for heterogeneousmobile sensor networks on a circle tomin-
imize the coverage cost function while preserving the mobile sen-
sors’ order on the circle. The difficulties caused by the heterogene-
ity of mobile sensors’ maximum velocities are twofold. Firstly, for
a network of mobile sensors with identical maximum speed it has
been shown in Song and Feng (2014) that the optimal configura-
tion is uniform deployment of the sensors on the circle. However,
it is still unclear under what conditions the coverage cost function
is minimized when a network of heterogeneous mobile sensors is
deployed. Secondly, it is noted that different constraints are im-
posed on themobile sensors’ control inputs due to the existence of
non-identicalmaximumvelocity for each sensor. This further com-
plicates the proof of mobile sensors’ order preservation and con-
vergence analysis of the distributed coverage control scheme. This
paper extends the preliminary results in Song, Liu, and Feng (2014)
by taking into consideration input constraints and order preserva-
tion of the mobile sensors.

The main contributions of this paper can be summarized as
follows. Firstly, it is shown that the mobile sensors’ order is
preserved throughout the network’s evolution under the proposed
coverage control scheme and thus collision between the sensors
is avoided during the coverage task. The idea is to first prove that
the spatial order of the sensors is preserved under the coverage
control laws without input constraints. Then, we show that the
order preservation property is not affected by the introduction
of saturation constraints on the sensors’ control inputs. Secondly,
a necessary and sufficient condition for the minimization of the
coverage cost function is derived by partitioning the circle into
subregions such that each sensor is assigned to a subregion and
the shortest arrival time from each sensor to an arbitrary point
located in its subregion is less than that from the other sensors in
the network. It is shown that the coverage cost function is globally
minimized if and only if the proportion of the counterclockwise
distance from each sensor to its right neighbor and the sum of the
two sensors’ maximum velocities reaches a consensus. Finally, it
is observed that the necessary and sufficient condition is satisfied
when all sensors’ control inputs converge to zero provided that

the sensors’ order is preserved. Using tools from graph theory
and matrix analysis, we show that under the distributed coverage
control laws the sensors’ control inputs reach a consensus as time
goes to infinity and the consensus value is equal to zero.

The rest of the paper is organized as follows. In Section 2, pre-
liminaries and notations are presented. Problem formulation is
given in Section 3. Distributed coverage control laws which pre-
serve the order of themobile sensors are proposed in Section 4 and
convergence analysis of the coverage control laws is given in Sec-
tion 5. In Section 6, simulation results are provided to illustrate the
main results. Finally, Section 7 concludes the paper.

2. Preliminaries and notations

Let G = (V, E) be a directed graph of order n with the set of
nodes V and the set of edges E ⊆ V × V . A subgraph (V1, E1) of
G is a graph with V1 ⊂ V and E1 ⊂ E ∩ (V1 × V1). An edge of G
is denoted by (i, j) which indicates node j can receive information
from node i. The in-neighbors of node j are N in

j = {i : (i, j) ∈ E}.
The adjacency matrix of G is defined as A = [aij] ∈ Rn×n with
aij > 0 if (j, i) ∈ E and aij = 0 otherwise. The Laplacian matrix
of G is given by L = [lij] ∈ Rn×n with lii =

n
k=1,k≠i aik and

lij = −aij, j ≠ i. A directed graph is said to be strongly connected
if there exists a directed path from every node to every other node.
A directed graph is said to have a spanning tree if there exists one
node which has a directed path to every other node. For a given
matrix E = [eij] ∈ Rn×n, the corresponding directed graph denoted
byG(E) is a directed graphwithnnodes and (j, i) ∈ G(E) if andonly
if eij ≠ 0. A matrix C is nonnegative and denoted by C ≥ 0 if all of
its entries are nonnegative. Similarly, C is positive and denoted by
C > 0 if each of its entry is positive.

Throughout this paper, Z and R+ represent the sets of integers
and strictly positive real numbers, respectively. Denote

n
i=1 Pi =

P1P2 . . . Pn. A standard saturation function sat(·) : R → R
is defined by sat(x) = sign(x)min{1, |x|}. For a vector x =

(x1, x2, . . . , xn)T ∈ Rn, sat(x) = [sat(x1), sat(x2), . . . , sat(xn)]T .
m(E) denotes the Lebesgue measure of a set E ⊆ R. 1n is a n × 1
column vector of ones.

3. Problem formulation

Consider a network of mobile sensors i, i ∈ In = {1, . . . , n}
initially located on a unit circle. Let S be the set of all points on the
circle. Denote the position of an arbitrary point q on the circle as
the angle measured counterclockwise from the positive horizontal
axis. The counterclockwise distance from sensor i to point q ∈ S
can be defined as d̄(qi, q) = (q − qi) mod 2π , where qi is the
position of sensor i and x mod 2π is the positive remainder of
the division of x by 2π . Then, the clockwise distance from sensor
i to point q is 2π − d̄(qi, q). The distance between sensor i and
point q is defined by d(qi, q) = min{d̄(qi, q), 2π − d̄(qi, q)}. In this
paper, q is not required to be constrained in [0, 2π ] and points q
and q + 2kπ, k ∈ Z refer to the same point on the circle.

For our subsequent analysis, label the sensors counterclockwise
in accordance with their initial locations on the circle and assume
that the sensors’ initial positions do not coincide with each other,
that is,

0 ≤ q1(0) < · · · < qi(0) < qi+1(0) < · · · < qn(0) < 2π. (1)

A mobile sensor network’s order is preserved if the inequalities
q1(k) < · · · < qi(k) < qi+1(k) < · · · < qn(k) < 2π + q1(k)
always hold. In this work, each sensor can only communicate with
its right neighbor and left neighbor on the circle. Then, the network
topology is fixed and strongly connected if the sensors’ order is
preserved throughout the entire evolution.
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