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a b s t r a c t

The problem of estimating the initial state of 1-D wave equations with globally Lipschitz nonlinearities
from boundary measurements on a finite interval was solved recently by using the sequence of forward
and backward observers, and deriving the upper bound for exact observability time in terms of Linear
Matrix Inequalities (LMIs) (Fridman, 2013). In the present paper, we generalize this result to n-D wave
equations on a hypercube. This extension includes new LMI-based exponential stability conditions for n-
D wave equations, as well as an upper bound on the minimum exact observability time in terms of LMIs.
For 1-D wave equations with locally Lipschitz nonlinearities, we find an estimate on the region of initial
conditions that are guaranteed to be uniquely recovered from the measurements. The efficiency of the
results is illustrated by numerical examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Lyapunov-based solutions of various control problems for
finite-dimensional systems can be formulated in the form of Lin-
ear Matrix Inequalities (LMIs) (Boyd, El Ghaoui, Feron, & Balakr-
ishnan, 1994). The LMI approach to distributed parameter systems
is capable of utilizing nonlinearities and of providing the desired
system performance (see e.g. Castillo, Witrant, Prieur, & Dugard,
2012, Fridman & Orlov, 2009b, Lamare, Girard, & Prieur, 2013). For
1-D wave equations, several control problems were solved by us-
ing the direct Lyapunov method in terms of LMIs (Fridman, 2013;
Fridman & Orlov, 2009a). However, there have not been yet LMI-
based results for n-D wave equations, though the exponential sta-
bility of the n-D wave equations in bounded spatial domains has
been studied in the literature via the direct Lyapunov method (see
e.g. Ammari, Nicaise, & Pignotti, 2010, Fridman, Nicaise, & Valein,
2010, Guo, Zhou, & Yao, 2014, Zuazua, 1990).

The problem of estimating the initial state of 1-D wave equa-
tions with globally Lipschitz nonlinearities from boundary mea-
surements on a finite interval was solved recently by using the
sequence of forward and backward observers, and deriving the
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upper bound for exact observability time in terms of LMIs (Frid-
man, 2013). In the present paper, we generalize this result to n-
D wave equations on a hypercube. This extension includes new
LMI-based exponential stability conditions for n-D wave equa-
tions. Their derivation is based on n-D extensions of the Wirtinger
(Poincaré) inequality (Hardy, Littlewood, & Pólya, 1988) and of the
Sobolev inequality with tight constants, which is crucial for the ef-
ficiency of the results. As in 1-D case, the continuous dependence of
the reconstructed initial state on the measurements follows from
the integral input-to-state stability of the corresponding error sys-
tem, which is guaranteed by the LMIs for the exponential stability.
Some preliminary results on global exact observability of multidi-
mensional wave PDEs will be presented in Fridman and Terushkin
(2015).

Another objective of the present paper is to study regional ex-
act observability for systems with locally Lipschitz in the state
nonlinearities. Here we restrict our consideration to 1-D case, and
find an estimate on the region of initial conditions that are guar-
anteed to be uniquely recovered from the measurements. Note
that our result on the regional observability cannot be extended to
multi-dimensional case (see Remark 4 for explanation and for dis-
cussion on possible n-D extensions for different classes of nonlin-
earities). The efficiency of the results is illustrated by numerical
examples.

The presented simple finite-dimensional LMI conditions com-
plete the theoretical qualitative results of e.g. Ramdani, Tucsnak,
and Weiss (2010) (where exact observability of linear systems in
a Hilbert space was studied via a sequence of forward and back-
ward observers) and Baroun, Jacob, Maniar, and Schnaubelt (2013)
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(where local exact observability of abstract semilinear systemswas
considered).
Notation: Rn denotes the n-dimensional Euclidean space with the
norm | · |, Rn×m is the space of n × m real matrices. The notation
P > 0 with P ∈ Rn×n means that P is symmetric and positive
definite. For the symmetricmatrixM ,λmin(M) andλmax(M) denote
the minimum and the maximum eigenvalues of M respectively.
The symmetric elements of the symmetric matrix will be denoted
by ∗. Continuous functions (continuously differentiable) in all
arguments, are referred to as of class C (of class C1). L2(Ω) is the
Hilbert space of square integrable f : Ω → R, whereΩ ⊂ Rn, with

the norm ∥f ∥L2 =


Ω

|f (x)|2dx. For the scalar smooth function
z = z(t, x1, . . . , xn) denote by zt , zxk , ztt , zxkxj (k, j = 1, . . . , n)
the corresponding partial derivatives. For z : Ω → R define
∇z = zTx = [zx1 . . . zxn ]

T , 1z =
n

p=1 zxpxp . H1(Ω) is the
Sobolev space of absolutely continuous functions z : Ω → R with
the square integrable ∇z. H2(Ω) is the Sobolev space of scalar
functions z : Ω → R with absolutely continuous ∇z and with
1z ∈ L2(Ω).

2. Observers and exponential stability of n-D wave equations

2.1. System under study and Luenberger type observer

Throughout the paper we denote byΩ the n-D unit hypercube
[0, 1]n with the boundaryΓ . We use the partition of the boundary:

ΓD = {x = (x1, . . . , xn)T ∈ Γ : ∃p ∈ 1, . . . , n s.t. xp = 0}

ΓN,p = {x ∈ Γ : xp = 1}, ΓN =


p=1,...,n

ΓN,p.

Here subscripts D and N stand for Dirichlet and for Neumann
boundary conditions respectively.

We consider the following boundary value problem for the
scalar n-D wave equation:

ztt(x, t) = 1z(x, t)+ f (z, x, t) inΩ × (t0,∞),
z(x, t) = 0 on ΓD × (t0,+∞),

∂

∂ν
z(x, t) = 0 on ΓN × (t0,∞),

(2.1)

where f is a C1 function, ν denotes the outer unit normal vector to
the point x ∈ Γ and ∂

∂ν
z is the normal derivative. Let g1 > 0 be the

known bound on the derivative of f (z, x, t)with respect to z:

|fz(z, x, t)| ≤ g1 ∀(z, x, t) ∈ Rn+2. (2.2)

SinceΩ is a unit hypercube, the boundary conditions on ΓN can be
rewritten as

zxp(x, t)

xp=1

= 0 ∀xi ∈ [0, 1], i ≠ p, p = 1, . . . , n.

Consider the following initial conditions:

z(x, t0) = z0(x), zt(x, t0) = z1(x), x ∈ Ω. (2.3)

The boundary measurements are given by

y(x, t) = zt(x, t) on ΓN × (t0,∞). (2.4)

Similar to Fridman (2013), the boundary-value problem (2.1) can
be represented as an abstract differential equation by defining the
state ζ (t) = [ζ0(t) ζ1(t)]T = [z(t) zt(t)]T and the operators

A =


0 I
1z 0


, F(ζ , t) =


0

F1(ζ0, t)


,

where F1 : H1(Ω) × R → L2(Ω) is defined as F1(ζ0, t) =

f (ζ0(x), x, t) so that it is continuous in t for each ζ0 ∈ H1(Ω). The
differential equation is

ζ̇ (t) = Aζ (t)+ F(ζ (t), t), t ≥ t0 (2.5)

in the Hilbert space H = H1
ΓD
(Ω)× L2(Ω), where

H1
ΓD
(Ω) =


ζ0 ∈ H1(Ω)

ζ0|ΓD
= 0


and ∥ζ∥2

H = ∥∇ζ0∥
2
L2 + ∥ζ1∥

2
L2 . The operator A has the dense

domain

D(A) =


(ζ0, ζ1)

T
∈ H1

ΓD
(Ω)× H1

ΓD
(Ω)

1ζ0 ∈ L2(Ω)

and
∂

∂ν
ζ0|ΓN

= −bζ1|ΓN


,

where b = 0. Here the boundary condition holds in a weak sense
(as defined in Sect. 3.9 of Tucsnak &Weiss, 2009), i.e. the following
relation holds:

⟨1ζ0, φ⟩L2(Ω) + ⟨∇ζ0,∇φ⟩[L2(Ω)]n = −b⟨ζ0, φ⟩L2(ΓN )

∀φ ∈ H1
ΓD
(Ω).

The operator A is m-dissipative (see Proposition 3.9.2 of Tuc-
snak & Weiss, 2009) and hence it generates a strongly continuous
semigroup. Due to (2.2), the following Lipschitz condition holds:

∥F1(ζ0, t)− F1(ζ̄0, t)∥L2 ≤ g1∥ζ0 − ζ̄0∥L2 (2.6)

where ζ0, ζ̄0 ∈ H1
ΓD
(Ω), t ∈ R. Then by Theorem 6.1.2 of Pazy

(1983), a unique continuousmild solution ζ (·) of (2.5) inH initial-
ized by

ζ0(t0) = z0 ∈ H1
ΓD
(Ω), ζ1(t0) = z1 ∈ L2(Ω)

exists in C([t0,∞),H). If ζ (t0) ∈ D(A), then this mild solu-
tion is in C1([t0,∞),H) and it is a classical solution of (2.1) with
ζ (t) ∈ D(A) (see Theorem 6.1.5 of Pazy, 1983).

We suggest a Luenberger type observer of the form:

ztt(x, t) = 1z(x, t)+ f
z, x, t, t ≥ t0, x ∈ Ω (2.7)

under the initial conditions [z(·, t0),zt(·, t0)]T ∈ H and the
boundary conditionsz(x, t) = 0 on ΓD × (t0,∞)

∂

∂ν
z(x, t) = k


y(x, t)−zt(x, t) on ΓN × (t0,∞)

(2.8)

where k is the injection gain.
The well-posedness of (2.7), (2.8) will be established by

showing the well-posedness of the estimation error e = z − z.
Taking into account (2.1), (2.3) we obtain the following PDE for the
estimation error e = z −z:
ett(x, t) = 1e(x, t)+ ge(x, t) t ≥ t0, x ∈ Ω (2.9)

under the boundary conditions

e(x, t) = 0 on ΓD × (t0,∞)

∂

∂ν
e(x, t) = −ket(x, t) on ΓN × (t0,∞).

(2.10)

Here ge = f (z, x, t)− f (z − e, x, t) and

g = g(z, e, x, t) =

 1

0
fz(z + (θ − 1)e, x, t)dθ.

The initial conditions for the error are given by

e(x, t0) = z1(x)− z(·, t0),
et(x, t0) = z2(x)− zt(·, t0).

The boundary conditions on ΓN can be presented as

exp(x, t)

xp=1

= −ket(x, t) ∀xi ∈ [0, 1],

i ≠ p, p = 1, . . . , n.
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