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a b s t r a c t

This paper studies the state estimation problem of linear discrete-time systems with unknown inputs
which can be treated as a wide-sense stationary process with rational power spectral density, while no
other prior information needs to be known. We propose an autoregressive (AR) model based unknown
input realization techniquewhich allows us to recover the input statistics from the output data by solving
an appropriate least squares problem, then fit an ARmodel to the recovered input statistics and construct
an innovationsmodel of the unknown inputs using the eigensystem realization algorithm. An augmented
state system is constructed and the standard Kalman filter is applied for the state estimation. A reduced
order model filter is also introduced to reduce the computational cost of the Kalman filter. A numerical
example is given to illustrate the procedure.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the state estimation problem for sys-
tems with unknown inputs. The main contribution of our work is
that when no prior information of the unknown inputs is known,
we recover the statistics of the unknown inputs from themeasure-
ments, and then construct an innovations model of the unknown
inputs from the recovered statistics such that the standard Kalman
filter can be applied for the state estimation. The innovations
model is constructed by fitting an autoregressive (AR)model to the
recovered input correlation data fromwhich a state spacemodel is
constructed using the balanced realization technique. The method
is tested on the stochastically perturbed heat transfer problem.

For stochastic systems, the state estimation problem with un-
known inputs is known as unknown input filtering (UIF) prob-
lem, and many UIF approaches are based on the Kalman filter
(Darouach, Zasadzinski, Onana, & Nowakowski, 1995; Hou & Pat-
ton, 1998; Koenig & Mammar, 2003). When the dynamics of the
unknown inputs is available, for example, if it can be assumed
to be a wide-sense stationary (WSS) process with known mean
and covariance, one common approach called Augmented State

✩ This work was supported by NSF CMMI grant 1200642. The material in this
paper was partially presented at the 2015 American Control Conference, July 1–3,
Chicago, IL, USA. This paper was recommended for publication in revised form by
Associate Editor Andrea Garulli under the direction of Editor Torsten Söderström.

E-mail addresses: yudan198811@hotmail.com (D. Yu), schakrav@tamu.edu
(S. Chakravorty).
1 Tel.: +1 979 997 3202; fax: +1 979 458 0064.

Kalman Filter (ASKF) is used, where the states are augmented with
the unknown inputs (Hsieh, 2013). To reduce the computational
complexity of ASKF, optimal two-stage Kalman filters (OTSKF) and
optimal three-stage Kalman filters have been developed to decou-
ple the augmented filter into two parallel reduced-order filters
by applying a U-V transformation (Ben Hmida, Khemiri, Ragot, &
Gossa, 2012;Hsieh&Chen, 1999; Kanev&Verhaegen, 2005).When
no prior information about the unknown input is available, an un-
biased minimum-variance (UMV) filtering technique has been de-
veloped (Gillijns & De Moor, 2007; Hsieh, 2009). The problem is
transformed into finding a gain matrix such that the trace of the
estimation errormatrix isminimized. Certain algebraic constraints
must be satisfied for the unbiased estimator to exist.

In this paper, we address the state estimation problem of sys-
tems when the unknown inputs can be treated as a WSS process
with rational power spectral density (PSD), while no other infor-
mation about the unknown inputs is known. We propose a new
unknown input filtering approach based on the system realization
techniques. Instead of constructing the observer gainmatrixwhich
needs to satisfy certain constraints, we apply the standard Kalman
filtering using the following procedure: (1) recover the statistics
of the unknown inputs from the measurements by solving an ap-
propriate least squares problem, (2) find a spectral factorization of
unknown input process by fitting an autoregressive (AR) model,
(3) construct an innovations model of the unknown inputs via the
eigensystem realization algorithm (ERA) (Juang, 1994) to the re-
covered input correlation data, and (4) apply the ASKF for state es-
timation. To reduce the computational cost of the ASKF, we apply
the Balanced Proper Orthogonal Decomposition (BPOD) technique
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(Rowley, 2005) to construct a reduced order model (ROM) for fil-
tering.

The main advantage of the AR model based algorithm we
propose is that the performance of the algorithm is better than
the ASKF, OTSKF and UMV algorithms when the unknown inputs
can be treated as WSS processes with rational PSDs. The AR model
based algorithm we propose constructs one particular realization
of the true unknown input model, and the performance of the AR
model based algorithm is the same as OTSKF when the assumed
unknown input model used in OTSKF is accurate, and is better
than UMV algorithm in the sense that the error covariances are
smaller. With the increase of the sensor noise, we have seen that
the performance of AR model based algorithm gets much better
than the UMV algorithm.

The paper is organized as follows. In Section 2, the problem is
formulated, and general assumptions are made about the system
and the unknown inputs. In Section 3, the AR model based
unknown input realization approach is proposed. The unknown
input statistics are recovered from themeasurements, then a linear
model is constructed using an AR model and the ERA is used to
generate a balanced minimal realization of the unknown inputs.
After an innovations model of the unknown inputs is constructed,
the ASKF is applied for state estimation in Section 4. Also, a
ROM constructed using the BPOD is introduced to reduce the
computational cost of Kalman filter. Section 5 presents a numerical
example consisting of a stochastically perturbed heat transfer
problem that utilizes the proposed technique.

2. Problem formulation

Consider a complex valued linear time-invariant (LTI) discrete
time system:

xk = Axk−1 + Buk−1, yk = Cxk + vk, (1)

where xk ∈ Cn, yk ∈ Cq, vk ∈ Cq, uk ∈ Cp are the state vector,
the measurement vector, the measurement white noise with zero
mean and known covariance Ω , and the unknown stochastic
inputs respectively. The process uk is used to model the presence
of the external disturbances, process noise, and unmodeled terms.
Here, A ∈ Cn×n, B ∈ Cn×p, C ∈ Cq×n are known.

Denote hi = CAi−1B, i = 1, 2, . . . as the Markov parameters of
system (1). We use x∗ to denote the complex conjugate transpose
of x, and xT to denote the transpose of x. Denote h̄i as the matrix
hi with complex conjugated entries, and h∗

i = (h̄i)
T . ∥A∥ =

(
n

i,j=1 |ai,j|2)1/2 denotes the Frobenius norm of matrix A, and
∥x∥2 = (|x1|2 + |x2|2 + · · · + |xn|2)1/2 denotes the Euclidean norm
of vector x.

The following assumptions are made about system (1):

• A1. A is a stable matrix, and (A, C) is detectable.
• A2. rank(B) = p, rank(C) = q, p ≤ q and rank (CAB) =

rank (B) = p.
• A3. uk and vk are uncorrelated.
• A4. We further assume that the unknown input uk can be

treated as a WSS process:

ξk = Aeξk−1 + Beνk−1, uk = Ceξk + µk, (2)

where νk, µk are uncorrelated white noise processes.

Remark 1. A2 is aweaker assumption than the so-called ‘‘observer
matching’’ condition used in unknown input observer design. The
observer matching condition requires rank (CB) = rank (B) = p,
which in practice,may be too restrictive. A2 implies that if there are
p inputs, then there should be at least p controllable and observable
modes. A4 implies that uk is a WSS process with a rational power
spectrum.

In this paper, we consider the state estimation problem when
the system (2), i.e., (Ae, Be, Ce) is unknown. Given the output data
yk, we want to construct an innovations model for the unknown
stochastic input uk, such that the output statistics of the innova-
tions model and system (2) are the same. Given such a realization
of the unknown input, we apply the standard Kalman filter for the
state estimation, augmented with the unknown input states.

3. AR model based unknown input realization technique

In this section, we propose an AR model based unknown input
realization technique which can construct an innovations model
of the unknown inputs such that the ASKF can be applied for state
estimation. First, a least squares problem is formulated based on
the relationship between the inputs and outputs to recover the
statistics of the unknown inputs. Then an AR model is constructed
using the recovered input statistics, and a balanced realization
model is then constructed using the ERA.

3.1. Extraction of input autocorrelations via a least squares problem

Consider system (1) with zero initial conditions, the output yk
can be written as:

yk =

∞
i=1

hiuk−i + vk. (3)

For a LTI system, under assumption A1 that A is stable, the output
{yk} is aWSS process when {uk} isWSS. The output autocorrelation
can be written as:
Ryy(m) = E[yky∗

k+m]

=

∞
i=1

∞
j=1

hiuk−iu∗

k+m−jh
∗

j + Rvv(m)

=

∞
i=1

∞
j=1

hiRuu(m + i − j)h∗

j + Rvv(m), (4)

where m = 0, ±1, ±2, . . . is the time-lag between yk and yk+m.
Here, assumption A3 is used.

We denote R̂yy(m) = Ryy(m) − Rvv(m), where Rvv(m) = Ω for
m = 0, and Rvv(m) = 0, otherwise. Therefore, the relationship
between input and output autocorrelation function is given by:

R̂yy(m) =

∞
i=1

∞
j=1

hiRuu(m + i − j)h∗

j . (5)

To solve for the unknown input autocorrelations Ruu(m), first we
need to use a theorem from linear matrix equations (Roth, 1934).

Theorem 2. Consider the matrix equation

AXB = C, (6)

where A, B, C, X are all matrices. If A ∈ Cm×n
= (a1, a2, . . . , an),

where ai are the columns of A, then define vec(A) ∈ Cmn×1 and the
Kronecker product A ⊗ B as:

vec(A) =

a1
...
an

 , A ⊗ B =

a11B · · · a1nB
... · · ·

...
am1B · · · amnB

 . (7)

If A is an m × n matrix and B is a p × q matrix, then the Kronecker
product A ⊗ B is an mp × nq block matrix.

The matrix equation (6) can be transformed into one vector
equation:

(BT
⊗ A)vec(X) = vec(C), (8)

where BT
⊗ A is the Kronecker product of BT and A.
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