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a b s t r a c t

A robust estimator for uncertain stochastic systems under unknown persistent disturbance is presented.
The given discrete-time stochastic formulation neither requires a known bound on the magnitude of
the unknown excitation nor assumes stability of the system. However, the proposed estimator assumes
certain structural conditions on system uncertainties. Though the proposed estimator is developed based
on stochastic Lyapunov analysis, its structure and performance are comparable to that of unbiased
minimum-variance filters based on the disturbance decoupling technique. Unlike unbiased minimum-
variance filters, implementation of the developed estimator only requires adding an auxiliary term to the
nominal steady-state Kalman filter, and it does not involve any similarity transformation or propagation
of matrix difference equations.

Published by Elsevier Ltd.

1. Introduction

The robust estimation problem involves recovering unmea-
sured state variables when the available plant model and the mea-
surement equation are uncertain. Four main approaches exist to
deal with the robust Kalman filter problem and they are based on
(i) H∞ filtering, (ii) set-valued estimation, (iii) guaranteed-cost fil-
tering, and (iv) regularized least-squares. All these approaches are
compared in Sayed (2001), where relevant concerns on parameter-
izations, stability, robustness, and online implementation of each
approach are addressed. In H∞ filtering, estimators are designed
to minimize the worst-case H∞ norm of the transfer function from
the noise inputs to the estimation error output (Bernstein, Haddad,
& Mustafa, 1991; Fu, de Souza, & Xie, 1992; Wang & Unbehauen,
1999). Since H∞ filtering is a worst-case design method, while
guaranteeing the worst-case performance, it generally sacrifices
the average filter performance. A robust state estimator for a class
of uncertain systemswhere the noise and uncertainty aremodeled
deterministically via an integral quadratic constraint is presented
in Savkin and Petersen (1995). This approach, known as set-valued
state estimation (Bertsekas & Rhodes, 1971), involves finding the
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set of all states consistent with given output measurements for a
system with norm-bounded noise input (James & Petersen, 1998).
The robust estimation approach known as guaranteed-cost filter-
ing is presented in Petersen and McFarlane (1994) and Xie, Soh,
and de Souza (1994). While the H∞ formulation and guaranteed-
cost filtering involve de-regularization, a robust estimator design
based on the regularized least-squares approach is presented in
Sayed (2001). Petersen and Savkin provide a comprehensive re-
search monograph on robust filtering for both discrete and con-
tinuous time systems from a deterministic as well as H∞ point of
view (Petersen & Savkin, 1999).

An alternative approach to robust estimator design consists
of representing the modeling errors and the unknown external
disturbances as unknown inputs and using the disturbance decou-
pling principle to render an estimator that is immune to the un-
known inputs. In the deterministic context this problem has been
extensively studied, and the conditions for the stability of the ob-
tained observers, commonly known as unknown input observers
(UIOs), are well known (Charandabi & Marquez, 2014; Darouach,
Zasadzinski, & Xu, 1994; Hou & Muller, 1994; Kudva, Viswanad-
ham, & Ramakrishna, 1980; Sundaram & Hadjicostis, 2007, 2008).
However, compared to the deterministic counterpart, fewer re-
sults are obtained for stochastic systems with unknown inputs.
In Kitanidis (1987), Kitanidis introduced an unbiased minimum-
variance estimator for determiningmean areal precipitation in the
presence of unknown inputs. This estimator, which later came to
be known as the Kitanidis filter, required that the filter gain is se-
lected such that the typical disturbance decoupling structural con-
dition is satisfied and the estimation error covariance isminimized.
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While the Kitanidis filter uses a single gain to satisfy both the struc-
tural condition and the minimum-variance condition, Darouach
and Zasadzinski relax these design criteria by dividing the estima-
tor gain into two separate terms, one satisfying the structural con-
dition and canceling the unknown inputs, and the other ensuring
the minimum-variance criterion (Darouach & Zasadzinski, 1997).
Global optimality of the estimators given in Kitanidis (1987) and
Darouach and Zasadzinski (1997) is proved in Kerwin and Prince
(2000). The robust two-stage Kalman filter given in Hsieh (2000)
further extends the Kitanidis filter by estimating the unknown in-
puts after assuming its dynamics.

Unlike the UIO-based filters, most of the robust Kalman filter
schemes only consider minor system parametric uncertainties or
asymptotically decaying disturbance. On the other hand, the un-
biased minimum-variance filters have shown to yield desirable
performance, but they require discarding the nominal estimator
and designing a brand-new estimator. Also, the UIO-based unbi-
ased minimum-variance filters often require the propagation of a
matrix difference equation, access to delayed measurements, and
either a similarity transformation or an extension of the estima-
tor dimensionality. Therefore, we propose a robust estimator that
can guarantee asymptotically unbiased estimates and exponen-
tially bounded mean-square error in the presence of persistently
exciting external disturbances. The given formulation neither re-
quires a known upper bound on unknown excitation nor assumes
the stability of the unknown system. Performance of the proposed
estimator does not depend on any design parameters and is con-
sistent across all admissible system uncertainties and external dis-
turbances. The proposed filter builds on a nominal estimator and it
only requires the addition of an auxiliary-input to the nominal es-
timator to account for the unknown inputs. Based on the stochas-
tic Lyapunov stability analysis, we present a systematic approach
for selecting the auxiliary-inputs such that the estimation error is
exponentially mean-square bounded and it asymptotically tracks
a desired optimal error. However, similar to the UIO-based filters,
the proposed estimator uses a linear image of the systemmeasure-
ments to fully cancel the effects of unknown inputs. Thus, the im-
plementation of the proposed estimator requires that the system
satisfies a structural condition as well as a detectability condition.
We show that the above conditions can be easily checked using a
linear matrix inequality (LMI) and then examines their relation to
the traditional disturbance decoupling structural condition as well
as the detectability condition of the disturbance decoupled system.

The structure of this paper is as follows. Formulation of the
problem and the development of a nominal estimator are first
given in Sections 2 and 3, respectively. Afterwards, development
of the proposed robust estimator based on stochastic Lyapunov
stability analysis is presented in Section 4. Generalization of the
developed robust estimator and its relation to UIO-based filters
are given in Section 5. Finally, concluding remarks are given in
Section 6.

2. Problem formulation

Consider a stochastic system of the following form:

z(k + 1) = F z(k) + Γ µ(k) + Gω(k),
y(k) = Hz(k) + ν(k). (1)

Here z(k) ∈ Rn is the state vector, y(k) ∈ Rm is the output vector,
µ(k) ∈ Rr is the unknown excitation, andω(k) is an n-dimensional
Gaussian white process noise sequence, i.e., ω(k) ∼ N (0,Q ),
while ν(k) is an m-dimensional Gaussian white measurement
noise sequence, i.e., ν(k) ∼ N (0, R).

Since all allowable system uncertainties can be lumped into the
unknown input, µ(k), here we assume that the elements of the
system matrices F ,H, Γ , and G are considered as exactly known.

Furthermore, the noise covariances Q ∈ Rn×n and R ∈ Rm×m are
assumed known. We also assume without loss of generality that
the matrix Γ is full column rank. This assumption can always be
satisfied by an appropriate transformation and renaming of the
unknown input signals.

Remark 1. The allowable system uncertainties are restricted by
the space spanned by the columns of Γ . For example, any
uncertainty in matrix F that is not in the range-space of Γ is not
an allowed system uncertainty.

Though the existence of the proposed estimator requires some
structural conditions on H and Γ , it neither requires any bounds
on unknown excitations nor assumes stability of F . Indeed, the
performance guarantee of the proposed estimator holds even if the
system matrix F is unstable and µ(k) is unbounded. At this point,
the only a priori system assumption is

Assumption 1. The n-dimensional pair (F ,H) is detectable.

Detectability of (F ,H) is a weak assumption, and it is required
for the design on a nominal estimator even when there are no
unknown inputs, i.e., when µ(k) = 0.

3. Nominal estimator

Consider a nominal system of the following form:

zm(k + 1) = Fzm(k) + Gω(k),
ym(k) = Hzm(k) + ν(k). (2)

For the system in (2), an optimal estimator such as a steady-state
Kalman filter of the following form may be implemented:

ẑm(k + 1) = F ẑm(k) + Kss

ym(k + 1) − HF ẑm(k)


, (3)

where Kss = PssHT

HPssHT

+ R
−1 is the observer gain and the

steady-state error covariance, Pss, can be obtained by solving the
discrete-time algebraic Riccati equation:

Pss = FPssF T
+ GQGT

− FPssHT 
HPssHT

+ R
−1

HPssF T . (4)

Now the corresponding estimator error dynamics may be written
as

z̃m(k + 1) = F z̃m(k) + Gω(k) − Kss

ym(k + 1) − HF ẑm(k)


, (5)

where z̃m(k) = zm(k) − ẑm(k). It can be shown that z̃m(k) is
unbiased and the steady-state value of the error covariance is given
as Jazwinski (1998)

lim
k→∞

E

z̃m(k)z̃Tm(k)


= Pss. (6)

Remark 2. Note that if the unknown inputs are fully known,
then the optimal estimator is the Kalman filter and its steady-
state performance would be comparable to that of the nominal
estimator in (3). Therefore, we adopt the nominal estimator error
dynamics in (5) as the desired estimator performance, and the
goal of the proposed design methodology is to introduce an
extra term to the nominal estimator such that we asymptotically
recover the desired performance. This is done at the cost of
introducing additional noise into the system and increasing the
overall estimation error covariance.

4. Robust estimator formulation

Here we propose a robust estimator of the following form:

ẑ(k + 1) = F ẑ(k) + Kss

y(k + 1) − HF ẑ(k)


+


, (7)

where


is an auxiliary input signal that wewill design to account
for the unknown input. Define z̃(k) = z(k) − ẑ(k). Now the
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