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a b s t r a c t

Traditionally, the convergence rate of the sliding variable given by a discrete reaching lawhas been fixed in
nature. This paper presents a generalized algorithm for discrete time sliding mode control systems which
offers a flexible convergence rate for the sliding variable. For analysis, we use the recently developed band
approachmethodwhich gives us the values of theparameters in the algorithm for thedesired convergence
to take place, once the ultimate band is chosen appropriately.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the advent of digital computer, most continuous systems
are treated in their discretized form. Hence, a major focus is on the
discrete sliding mode, which has been dealt in various literatures
(Bandyopadhyay & Janardhanan, 2006; Bartolini, Ferrara, & Utkin,
1995; Bartoszewicz, 1998; Gao, Wang, & Homaifa, 1995). All these
works mainly deal with proposing a reaching law and deriving the
control and the ultimate band in terms of the controller parameters
used in the reaching law. The most popular among these reaching
laws are the ones attributed to Bartolini et al. (1995) and Gao et al.
(1995).

In the recent work (Chakrabarty & Bandyopadhyay, 2014), a
new approach to analyze Gao’s discrete reaching law has been
developed and utilized to find out the controller parameter values
once the desired ultimate band value is chosen from a specified
range. This approach is proved to be better than Gao’s approach
in Gao et al. (1995), since the ultimate band obtained this way is
much lesser than that proposed by existing analysis. Also, one is
at liberty to choose the value of the ultimate band beforehand and
then calculate the controller parameters accordingly.
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recommended for publication in revised form by Associate Editor A. Pedro Aguiar
under the direction of Editor André L. Tits.
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1.1. Motivation

The new approach in Chakrabarty and Bandyopadhyay (2014),
which we refer as the band approach method, has not been used
to analyze any other dynamics than the Gao’s reaching law until
recently in Chakrabarty and Bandyopadhyay (2013), where the
sliding variable dynamics as generated by the system is found out
to be different than the reaching lawused to derive the control. The
dynamics was not only a function of the sliding variable but also
had the states of the systemmixed in it. The band approachmethod
was applied to analyze this dynamics and the ultimate band was
found out, for which the controller parameters were computed.
This work put forward a more general dynamics than the Gao’s
reaching law, which was subjected to the band approach analysis.
This inspired the authors to work further and search for a more
generalized dynamics that this analysis method can handle. This
led to the proposal of the generalized reaching law in Chakrabarty
and Bandyopadhyay (2015). In the mentioned paper, a discrete
time reaching law as

s(k + 1) = f1(s(k)) + f2(ξ(k), k) + f3sgn(s(k)) + d(k) (1)

was proposed, where f1 and f2 are functions in the variables
mentioned, f3 can either be a constant or a varying gain depending
on a particular problem. Here, s(k) ∈ R and ξ(k) ∈ Rq are taken
with k denoting the sample count, where ξ(k) can be any variable
other than s(k), which is known at all k. The uncertainty d(k) is
assumed to vary only at the sampling instants and bounded. The
above reaching law (1) is general in the sense that it includes
functions of variables other than the sliding variable. Also, f1(s(k))
is not necessarily a linear function as in Gao’s reaching law

http://dx.doi.org/10.1016/j.automatica.2015.10.018
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2015.10.018
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.10.018&domain=pdf
mailto:sohom@sc.iitb.ac.in
mailto:bijnan@sc.iitb.ac.in
http://dx.doi.org/10.1016/j.automatica.2015.10.018


S. Chakrabarty, B. Bandyopadhyay / Automatica 63 (2016) 34–37 35

(Gao et al., 1995). This led us to choose the functions appropriately
so as to design a discrete reaching lawwhich would have a flexible
convergence rate.

The same reaching law (1) is used in the work in Chakrabarty
and Bandyopadhyay (2015) to show convergence of the sliding
variable inside an ultimate bound, when the system is affected by
a disturbance which is bounded by known but varying functions.
Different choice of the functions in the generalized reaching law (1)
made it possible to establish a relationship between the ultimate
bound and the parameters in the reaching law.

One needs to mention at this point that there had been several
works in the literature which deal with proposing new reaching
laws ormodifying the already popular reaching laws (Bartoszewicz
& Latosinski, 2014; Bartoszewicz & Lesniewski, 2014a,b; Niu, Ho, &
Wang, 2010; Yuan, Shen, Xiao, & Wang, 2012; Zhu, Wang, Jiang, &
Wang, 2009). However, there had not been any proposal for any
generalized reaching algorithm, and any analysis to show that it
would result in varying convergence rate of the sliding variable by
simple choices of the functions in the generalized reaching law. The
work in this paper is novel in that regard.

2. Main analysis

The requirement for steady convergence with rate one can be
defined as the convergence which assures |s(k + 1)| < |s(k)|.
However, one can easily extend the idea of convergence to higher
rates n, which would mean that |s(k + 1)| < |s(k)|1/n will be
assured for n ∈ I.

In this section, a generalized convergence scheme of the sliding
variable is proposed with the help of the reaching law (1) for
different n ∈ I. Thereby, the relationships of the controller
parameters with a chosen ultimate band are also proposed.

Let f2(ξ(k), k) ≡ 0 and f1(s(k)) = f0|s(k)|1/nsgn(s(k)) in the
reaching law (1), where f0 is a constant and n is a positive integer.
Hence, the reaching law (1) becomes

s(k + 1) = f0|s(k)|1/nsgn(s(k)) + f3sgn(s(k)) + d(k) (2)

where d(k) ∈ [−dm, dm] is assumed.
In the next subsection, it will be shown how the reaching law

in (2) gives us a general convergence rate of |s(k + 1)| < |s(k)|1/n,
where convergencewill be faster as n is increased, i.e., the reaching
phase will be minimized.

2.1. Main analysis with band approach method

In the sequel, the proofs for the lemmas and the theorem will
be shown for s(k) > 0. The analysis would lead to the same results
if it was done for s(k) < 0 because of the symmetric nature of the
reaching law (2).

Lemma 1. Suppose the following relations hold:

(i) Bd ∈ [dm, 2dm) (3a)
(ii) f0 ∈ [0, 1) (3b)
(iii) f3 = (1 − f0)Bd − dm (3c)

Then the reaching law (2) satisfies |s(k + 1)| < |s(k)|1/n whenever
|sk|1/n > Bd.

Proof. Using (3c) and f0 < 1 in the region s(k) > Bn
d and consider-

ing the maximum value of uncertainty d(k) = dm in (2), we get

s(k + 1) = f0s(k)1/n + (1 − f0)Bd − dm + d(k)

= s(k)1/n − (1 − f0)(s(k)1/n − Bd) (4)

⇒ s(k + 1) <s(k)1/n.

Let us define

Bc := 2dm − Bd. (5)

Using (3c) and f0 ≥ 0 in the region s(k) > Bn
d and considering the

minimum value of uncertainty d(k) = −dm in (2), we get

s(k + 1) = f0s(k)1/n + (1 − f0)Bd − dm + d(k)
⇒ s(k + 1) >f0Bd + (1 − f0)Bd − 2dm (6)

= − Bc

Now, from (5) and (3a), we get Bc ∈ (0, dm]. This implies Bc ≤ Bd.
Hence, (5) ensures that |s(k+1)| < |s(k)|1/n evenwhen s(k) crosses
zero.

Lemma 2. Let the relations (3b) and (3c) hold for the reaching
law (2). Additionally, suppose

f0 = 2 −
2dm
Bd

. (7)

Then the reaching law (2) satisfies |s(k + 1)| < Bd whenever 0 <
|sk|1/n ≤ Bd.

Proof. In the region 0 < s(k) ≤ Bn
d , using (3c) and (3b) in (2), we

get

s(k + 1) = f0s(k)1/n + (1 − f0)Bd − dm + d(k)
≤ f0Bd + (1 − f0)Bd

= Bd (8)

by taking the maximum bound of the disturbance d(k) = dm.
Let us define

Bs := 2dm − (1 − f0)Bd. (9)

In the region 0 < s(k) ≤ Bn
d , using (3c) and taking s(k) → 0 in (2),

we get

s(k + 1) = (1 − f0)Bd − dm + d(k)
≥ (1 − f0)Bd − 2dm
= − Bs (10)

by taking the minimum bound of the disturbance d(k) = −dm.
But since f0 is given by (7), we get Bs = Bd. Hence |s(k+1)| ≤ Bd

even when {s(k)} crosses zero.

Theorem 1. Let us assume the following to hold:

(1) Bd ∈ [dm, 2dm)
(2) f0 = 2 −

2dm
Bd

and
(3) f3 = (1 − f0)Bd − dm.

Then for the cases

(i) Bd ≥ 1, ∀ n ∈ I
(ii) n = 1, ∀ Bd the sequence {sk} following the reaching law (2)will

be ultimately bounded by δ = Bd ∀k ≥ K ∈ N, excepting
the situation where |s(0)| > Bn

d and the disturbance sequence
{d(k)} = dmsgn(s(0)) ∀ k ≥ 0 with Bd > dm is chosen. Then
δ = (1 + ρ)Bd, with ρ > 0, is however small.
For the remaining case

(iii) Bd < 1, ∀ n > 1 the sequence {sk} following the reaching law
(2)will be ultimately bounded by δ = f0 + (1− f0)Bd ∀ k ≥ K ∈

N.

Proof. Let us first discuss cases (i) and (ii).
From Lemma 2, |s(k + 1)| ≤ Bd whenever |s(k)|1/n ≤ Bd. Since

|s(k)| ≤ Bd ⇒ |s(k)|1/n ≤ Bd when Bd ≥ 1, Lemma 2 implies
|s(k+1)| ≤ Bd whenever |s(k)| ≤ Bd. Hence Bd can be the ultimate
band in this case, i.e., when Bd ≥ 1 ∀n ∈ I. The same can be
said when n = 1 for any choice of Bd. However, from Lemma 1,
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