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a b s t r a c t

This communique presents simple simulation-based algorithms for obtaining an approximately optimal
policy in a given finite set in large finite constrained Markov decision processes. The algorithms are
adapted from playing strategies for ‘‘sleeping experts and bandits’’ problem and their computational
complexities are independent of state and action space sizes if the given policy set is relatively small. We
establish convergence of their expected performances to the value of an optimal policy and convergence
rates, and also almost-sure convergence to an optimal policy with an exponential rate for the algorithm
adapted within the context of sleeping experts.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a discrete-time system with infinite horizon: xt+1 =
f (xt , at , wt) for t = 0, 1, 2, . . . , where xt is the state at time t –
ranging over a finite set X , at is the action at time t – to be chosen
from a nonempty subset A(xt) of a given finite set of available
actions A at time t , and wt is a random disturbance uniformly
and independently selected from [0, 1] at time t , representing the
uncertainty in the system, and f is a next-state function such that
f (x, a, w) ∈ X for x ∈ X, a ∈ A(x), and w ∈ [0, 1].

Define a (stationary non-randomized Markovian) policy π :

X → Awith π(x) ∈ A(x) for all x ∈ X and value function of π given
by Vπ (x) = Ew0,...,w∞ [


∞

t=0 γ tR(xt , π(xt), wt)|x0 = x], x ∈ X ,
with discount factor γ ∈ (0, 1) and one-period reward func-
tion R such that R(x, a, w) ∈ R+ for x ∈ X, a ∈ A(x), and
w ∈ [0, 1] and constraint value function of π given by Jπ (x) =
Ew0,...,w∞ [


∞

t=0 β tC(xt , π(xt), wt)|x0 = x], x ∈ X , with dis-
count factor β ∈ (0, 1) and one-period cost function C such that
C(x, a, w) ∈ R+ for x ∈ X, a ∈ A(x), and w ∈ [0, 1]. We also have
a constraint constant K > 0 which determines the feasibility of π .
A policy π is defined to be feasible at x if Jπ (x) ≤ K . The function f ,
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together with X, A, R, C , and K comprise a constrainedMarkov de-
cision process (CMDP) (Altman, 1998). For simplicity, we consider
one constraint case. Extension to multiple case is straightforward.
We let Rmax = supx,a,w R(x, a, w) and Cmax = supx,a,w C(x, a, w).

For a given w = {wt}, we let Vπ (x, w) =

∞

t=0 γ t R(xt , π(xt),
wt) and Jπ (x, w) =


∞

t=0 β tC(xt , π(xt), wt) with x0 = x. We
assume throughout that any sample of Vπ (x, w) and Jπ (x, w) is
bounded. Without loss of generality, we take the bound to be
1, i.e., for any w, x, and π , Vπ (x, w) ∈ [0, 1] and Jπ (x, w) ∈
[0, 1]. (The generalization to an arbitrary bound can be done by
appropriate scaling. Or by defining a transformation of R into R′
such thatR′(x, a, w) = R(x, a, w)(1−γ )/Rmax andC toC ′ similarly,
we can construct an ‘‘equivalent’’ CMDP to the given CMDP which
satisfies the assumption.) We also assume that an initial state x0 is
fixed by some x ∈ X and a nonempty finite policy set Π is given.
That is, Π, x0, and K are problem specific parameters.

A policy π ∈ Π is called ϵ-feasible (at x) if Jπ (x) ≤ K+ϵ for ϵ ≥
0. We let ϵ-feasible policy set Π ϵ

f = {π : π ∈ Π, Jπ (x) ≤ K + ϵ}.
We then say that for ϵ ≥ 0, π∗ϵ ∈ Π is an ϵ-feasible optimal policy
if for some nonempty ∆ such that Π−ϵ

f ⊆ ∆ ⊆ Π ϵ
f , π

∗
ϵ ∈ ∆ and

maxπ∈∆ Vπ (x) = Vπ∗ϵ (x). The problem we consider is obtaining or
estimating a 0-feasible optimal policy in Π , if such a policy exists.

The problem of obtaining a 0-feasible optimal policy is known
to be NP-hard if Π contains all possible policies (in which case
|Π | = |A||X |) and the problem size is characterized by the
maximum of |X | and maxx∈X |A(x)| and the number of constraints
(Feinberg, 2000). It seems that there exist only two exact iterative
algorithms for this problem that exploit structural properties of
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CMDPs. Chen and Feinberg (2007) provided a value-iteration type
algorithm based on certain dynamic programming equations and
Chang (2014) presented a policy-iteration type algorithm based
on a feasible-policy space characterization. Unfortunately, both
require solving certain finite or infinite horizon MDP problems
so that computational complexities depend on state and action
space sizes. Note that linear programming used for finding a best
randomized policy cannot be applied here due to non-linearity and
non-convexity of this problem (cf., P1 in Feinberg, 2000, Theorem
3.1).

Even if there exists a body of works on simulation-based
algorithms for solving unconstrained MDPs in order to break
the curse of dimensionality (see, e.g., Chang, Fu, Hu, & Marcus,
2007, Powell, 2011 and the references therein), it seems that
there has been no notable approach to CMDPs via simulation.
This paper is probably the first step towards developing such
algorithms. Because the algorithms proposed in this paper work
with simulated sample-paths, computational complexities are
independent of |X | and |A| as long as |Π | is relatively small.

Our approach is simple and natural. We generate a sequence of
{Πf ,n,H , n = 1, . . . ,N} where Πf ,n,H is an estimate of Π0

f , similar
to the sample average approximation (SAA) method (Kleywegt,
Shapiro, & Homom-De-Mello, 2001), by using simulation over a
finite horizon H . For each π ∈ Π , Jπ (x) is estimated with a
sample mean and if the sample mean is less than or equal to K ,
π is included in Πf ,n,H . We then generate a sequence of policies
{π(n), n = 1, . . . ,N} from Πf ,n,H at iteration n, where π(n) is an
estimate of a 0-feasible optimal policy. The selection of π(n) from
Πf ,n,H follows the structure of the two playing strategies, called
‘‘follow-the-awake-leader’’ (FTAL) and ‘‘awake-upper-estimated-
reward’’ (AUER), for ‘‘sleeping experts and bandits’’ problems
(Kleinberg, Niculescu-Mizil, & Sharma, 2010) in on-line decision
making. A major difference between FTAL and AUER is that for
FTAL, we simulate each policy inΠf ,n,H to update the samplemean
of each policy but for AUER, we simulate only selected policy π(n)
to update the sample mean of π(n).

Sleeping experts and bandits model (see, Kleinberg et al., 2010
for a formal description) formulates problemswithin the context of
on-line sequential decision making process. We wish to develop a
playing strategy which maximizes the sum of the sample rewards
(over a finite horizon) obtained by choosing an action from cur-
rently ‘‘awaken’’ actions in each round. The set of available actions
changes from one round to the next and when played, each arm
provides a random reward from an unknown distribution specific
to that arm. In the so-called expert setting, once an action is chosen
and played, the sample rewards of all available actions are even-
tually revealed to the strategy at the end of each round. On the
other hand, in the bandit setting, only the reward of the chosen
action is revealed. The performance of the strategy is measured
by ‘‘expected regret’’, roughly, the difference between the sum of
the expected rewards of the strategy’s chosen actions and that of
the highest ranked actions in each round in terms of the expected
reward, i.e., the best sequence of action choices in hindsight. We
view Πf ,n,H as the set of currently awaken or non-sleeping ex-
perts/bandits in Π and the sample value of the accumulated re-
ward sum over the horizon H as the sample reward of playing
the expert/bandit π . By proper adaptation of the results of the ex-
pected regret defined over the sleeping experts and bandits model
then, we can establish convergence of the expected performance
of our approach without the assumption that a 0-feasible optimal
policy is unique.We show thatwhenΠ0

f ≠ ∅, the expected perfor-
mance 1/N

N
n=1 E[V

π(n)
H (x)] approaches the value of a 0-feasible

optimal policymaxπ∈Π0
f
Vπ (x) asN →∞ andH →∞with a rate

ofO(1/N) (forN ≥ (minπ,π ′∈Π {Vπ (x)−Vπ ′(x) : Vπ (x)−Vπ ′(x) >
0})−1) in the FTAL case and of O(lnN/N) in the AUER case for such

N . Here Vπ
H (x) = Ew0,...,wH−1 [

H−1
t=0 γ tR(xt , π(xt), wt)|x0 = x] for

H < ∞. For the FTAL case, we further provide almost-sure con-
vergence of π(N) to a 0-feasible optimal policy as N and H go to
infinitywith an exponential convergence rate at the expense of the
assumption that value functions are all different among policies.

The works on the problem of finding the best solution from
a finite set of solutions given stochastic objective and constraint
functions by simulation are relatively sparse (see Pasupathy,
Hunter, Pujowidianto, Lee, & Chen, 2015 and the related references
therein). These works study allocating different (Monte-Carlo)
simulation budgets to the solutions to (approximately) maximize
the probability of selecting the best solution from sample-
mean estimates but provide explicit forms of such allocation
only in an asymptotic limit, i.e., when the total number of
samples approaches infinity. This is also typically given under the
assumption that the best solution is unique and the distribution of
samples are normal and in terms of the unknown true means and
variances. Even if heuristic iterative approximation procedures of
such results are given, the convergences of those are not known.
In our context, the best policy is not necessarily unique and the
normality assumption is not necessarily valid. Although Pasupathy
et al. (2015) consider general distribution case, the optimal
allocation is only characterized by an optimization problem so that
explicit forms of budget allocation are difficult to obtain even in
an asymptotic limit except for some special cases. Without the
uniqueness and the normality assumptions, Li, Sava, andXie (2009)
consider a sequence of penalty cost functions to combine objective
and constraint functions with certain budget allocation strategy
among the solutions but obtaining the sequence of the penalty cost
functions is not straightforward and their algorithm converges to
a locally optimal solution when some restrictive assumptions are
satisfied.

Our setting also covers that in which explicit forms for f , R,
and C are not available, but they can be simulated. In this
setting, another approach to consider is to employ a stochastic-
approximation based learning-algorithm as for unconstrained
MDPs (see, e.g., Bhatnagar, Hemachandra, & Mishra, 2011 and
Djonin & Krishnamurthy, 2007). But this works when Π is the set
of all possible policies and the convergence speed is typically very
slow and finite-time behaviours of such methods are not known.
Moreover, it is not immediate how to adapt such approach when
Π is a subset of the set of all possible policies.

2. Algorithm

We first provide the pseudocode of the FTAL algorithm below.
It mainly consists of the Feasible-Policy Set Estimation step and
the Feasible Optimal Policy Estimation step. The Feasible-Policy
Set Estimation step obtains Πf ,n,H = {π : Jπn,H(x) ≤ K , π ∈
Π} at iteration n. Here Jπn,H(x) is the sample mean obtained by n
independent samples of JπH (x, wπ ) =

H−1
t=0 β tC(xt , π(xt), wπ

t )
for wπ

= {wπ
0 , . . . , wπ

H−1} and H < ∞. We let JπH (x) :=
Ewπ [JπH (x, wπ )]. The Feasible Optimal Policy Estimation step se-
lects π(n) that achieves maxπ∈Πf ,n,H Vπ

τ(π),H(x) if Πf ,n,H ≠ ∅

and τ(π) ≠ 0 for all π ∈ Πf ,n,H . (That is, we ‘‘follow the
current best’’ among non-sleeping experts.) Similarly, Vπ

n,H(x)
is the sample mean obtained by n independent samples of
Vπ
H (x, wπ ) =

H−1
t=0 γ tR(xt , π(xt), wπ

t ), and recall that Vπ
H (x) =

Ewπ [Vπ
H (x, wπ )]. Note thatwπ generated in JπH (x, wπ ) for allπ ∈ Π

is reused in Vπ
H (x, wπ ) for all π ∈ Πf ,n,H . The counter τ(π) keeps

track of the number of timesπ has been simulated to obtain a sam-
ple of Vπ

H (x, w). Whenever π is included in Πf ,n,H at some n, π is
simulated. If there exists π in Πf ,n,H such that τ(π) = 0, π(n) is
set to be any such π . If Πf ,n,H = ∅, π(n) is set to be any π ∈ Π .
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