
Automatica 59 (2015) 9–18

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Complete stability analysis of a heuristic approximate dynamic
programming control design✩

Yury Sokolov a, Robert Kozma a,1, Ludmilla D. Werbos b, Paul J. Werbos b

a Department of Mathematical Sciences, The University of Memphis, USA
b IntControl LLC, Arlington, and CLION, The University of Memphis, USA

a r t i c l e i n f o

Article history:
Received 10 August 2013
Received in revised form
22 April 2015
Accepted 17 May 2015

Keywords:
Adaptive dynamic programming
Action-Dependent Heuristic Dynamic
Programming

Adaptive control
Adaptive critic
Neural network
Gradient descent
Lyapunov function

a b s t r a c t

This paper provides new stability results for Action-Dependent Heuristic Dynamic Programming
(ADHDP), using a control algorithm that iteratively improves an internal model of the external world in
the autonomous system based on its continuous interaction with the environment. We extend previous
results for ADHDP control to the case of general multi-layer neural networks with deep learning across
all layers. In particular, we show that the introduced control approach is uniformly ultimately bounded
(UUB) under specific conditions on the learning rates, without explicit constraints on the temporal
discount factor. We demonstrate the benefit of our results to the control of linear and nonlinear systems,
including the cart–pole balancing problem. Our results show significantly improved learning and control
performance as compared to the state-of-the-art.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive Dynamic Programming (ADP) addresses the general
challenge of optimal decision and control for sequential decision
making problems in real-life scenarios with complex and often un-
certain, stochastic conditionswithout the presumption of linearity.
ADP is a relatively young branch of mathematics; the pioneering
work (Werbos, 1974) provided powerful motivation for extensive
investigations of ADP designs in recent decades (Barto, Sutton, &
Anderson, 1983; Bertsekas & Tsitsiklis, 1996; Lendaris, 2009; Si,
Barto, Powell, & Wunsch, 2004; Vrabie & Lewis, 2009; Wang, Liu,
Wei, Zhao, & Jin, 2012; Werbos, 1992; Zhang, Liu, Luo, & Wang,
2013). ADP has not only shown solid theoretical results to optimal
control but also successful applications (Venayagamoorthy, Harley,

✩ This research was supported in part by National Science Foundation (NSF)
to Robert Kozma in the CRCNS Program, grant #DMS-13-11165. The material in
this paper was partially presented at the 2013 International Joint Conference on
Awareness Science and Technology, November 2–4, 2013, Aizu-Wakamatsu, Japan.
This paper was recommended for publication in revised form by Associate Editor
Raul Ordóñez under the direction of Editor Miroslav Krstic.

E-mail addresses: ysokolov@memphis.edu (Y. Sokolov), rkozma@memphis.edu
(R. Kozma), l.dalmat@gmail.edu (L.D. Werbos), werbos@ieee.org (P.J. Werbos).
1 Tel.: +1 901 678 2497; fax: +1 901 678 2480.

&Wunsch, 2003). Various ADP designs demonstrated powerful re-
sults in solving complicated real-life problems, involving multi-
agent systems and games (Al-Tamimi, Lewis, & Abu-Khalaf, 2007;
Valenti, 2007; Zhang, Wei, & Liu, 2011).

The basic ADP approaches include heuristic dynamic program-
ming (HDP), dual heuristic dynamic programming (DHP) and glob-
alized DHP (GDHP) (Prokhorov & Wunsch, 1997; Werbos, 1974,
1990; White & Sofge, 1992). For each of these approaches there
exists an action-dependent (AD) variation (White & Sofge, 1992).
For several important cases, the existence of stable solution for
ADP control has been shown under certain conditions (Abu-Khalaf
& Lewis, 2005; Lewis & Liu, 2012; Vrabie & Lewis, 2009; Zhang,
Zhang, Luo & Liang, 2013).

The stability of ADP in the general case is an open and
yet unsolved problem. There are significant efforts to develop
conditions for stability in various ADP designs. We solved the
stability problem for the specific ADHDP control case using the
Lyapunov approach, which is a classical method of investigating
stability of dynamical processes. Here we address a discrete time
dynamical system,where the dynamics is described by a difference
equation. The discrete time Lyapunov function is used to prove the
stability of the controlled process under certain conditions. In this
paper we generalize the results of Liu, Sun, Si, Guo, andMei (2012)
for deriving stability conditions for ADHDP with traditional three
layer Multi-Layer Perceptron (MLP). The work (Liu et al., 2012)

http://dx.doi.org/10.1016/j.automatica.2015.06.001
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2015.06.001
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.06.001&domain=pdf
mailto:ysokolov@memphis.edu
mailto:rkozma@memphis.edu
mailto:l.dalmat@gmail.edu
mailto:werbos@ieee.org
http://dx.doi.org/10.1016/j.automatica.2015.06.001


10 Y. Sokolov et al. / Automatica 59 (2015) 9–18

derives a stability condition for the system with weights adapted
between the hidden and output layers only, under the assumption
that networks have large enough number of neurons in the hidden
layers.

The approach presented in Liu et al. (2012), in effect, is equiv-
alent to a linear basis function approach: it is easy but it leads to
scalability problems. The complexity of the system is growing ex-
ponentially for the required degree of approximation of a func-
tion of given smoothness (Barron, 1994). Additional problems arise
regarding the accuracy of parameter estimation, which tends to
growwith the number of parameters, all other factors are kept the
same. If we have too many parameters for a limited set of data,
it leads to overtraining. We need more parsimonious model, ca-
pable of generalization, hence our intention is to use fewer pa-
rameters in truly nonlinear networks, which is made possible by
implementing more advanced learning algorithm. In the present
work we focus on studying the stability properties of the ADP sys-
temwithMLP-based critic, when theweights are adapted between
all layers. By using Lyapunov approach, we study the uniformly
ultimately bounded property of the ADHDP design. Preliminary
results of our generalized stability studies have been reported in
Kozma and Sokolov (2013), where we showed that our general ap-
proach produced improved learning and convergence results, es-
pecially in the case of difficult control problems.

The rest of the paper is organized as follows. First we briefly
outline theoretical foundations of ADHDP. Next we describe the
learning algorithm based on gradient descent in the critic and
action networks. This is followed by the statements and the proofs
of our main results on the generalized stability criteria of the ADP
approach. Finally, we illustrate the results using examples of two
systems. The first one is a simple linear system used in Liu et al.
(2012), and the second example is the inverted pendulum system,
similar to He (2011). We conclude the paper by outlining potential
benefits of our general results for future applications in efficient
real-time training and control.

2. Theoretical foundations of ADHDP control

2.1. Basic definitions

Let us consider a dynamical system (plant) with discrete
dynamics, which is described by the following nonlinear difference
equation:

x(t + 1) = f (x(t), u(t)) , (1)

where x is the m-dimensional plant state vector and u is the
n-dimensional control (or action) vector.

Previously we reported some stability results for ADP in the
general stochastic case (Werbos, 2012). In this paper we focus
on the deterministic case, as described in Eq. (1) and introduce
action-dependent heuristic dynamic programming (ADHDP) to
control this system. The original ADHDP method has been used
in the 1990s for various important applications, including the
manufacturing of carbon–carbon composite parts (White & Sofge,
1992). ADHDP is a learning algorithm for adapting a system made
up of two components, the critic and the action, as shown in Fig. 1.
These two major components can be implemented using any kind
of differentiable function approximator. Probably the most widely
used value function approximators in practical applications (as
surveyed in Lewis & Liu, 2012) are neural networks, linear basis
function approximators, and piecewise linear value functions such
as those used by Powell (2011). In this work we use MLP as the
universal function approximator.

The optimal value function, J∗ is the solution of the Bellman
equation (White & Sofge, 1992), which is a function of the state
variables but not of the action variables. Here we use function

Fig. 1. Schematics of the implemented ADHDP design.

J , which is closely related to J∗, but J is a function of both the
state and the action variables. Function J is often denoted by J ′ in
the literature, following the definition in White and Sofge (1992,
Chapter 3). The critic provides the estimate of function J , which is
denoted as Ĵ . Function Q , used in traditional Q -learning (Si et al.,
2004) is the discrete-variable equivalent of J .

The action network represents a control policy. Each combina-
tion of weights defines a different controller, hence by exploring
the space of possible weights we approximate the dynamic pro-
gramming solution for the optimal controller. ADHDP is a method
for improving the controller from one iteration to the next, from
time instant t to t + 1. We also have internal iterations, which are
not explicit (He, 2011; Lewis & Liu, 2012). Namely, at a given t , we
update the weights of the neural networks using supervised learn-
ing for a specific number of internal iteration steps.

In ADHDP, the cost function is expressed as follows; see, e.g.,
Lewis and Liu (2012):

J(x(t), u(t)) =

∞
i=t

αi−t r(x(i + 1), u(i + 1)), (2)

where 0 < α ≤ 1 is a discount factor for the infinite horizon
problem, and r(x(t), u(t)) is the reward or reinforcement or utility
function (He, 2011; Zhang, Liu et al., 2013). We require r(t) =

r(x(t), u(t)) to be a bounded semidefinite function of the state
x(t) and control u(t), so the cost function is well-defined. Using
standard algebra one can derive from (2) that 0 = αJ(t) + r(t) −

J(t − 1), where J(t) = J(x(t), u(t)).

2.2. Action network

Next we introduce each component, starting with the action
component. The action component will be represented by a neural
network (NN), and its main goal is to generate control policy. For
our purpose, MLP with one hidden layer is used. At each time
step this component needs to provide an action based on the state
vector x(t) = (x1(t), . . . , xm(t))T , so x(t) is used as an input for
the action network. If the hidden layer of the action MLP consists
of Nha nodes; the weight of the link between the input node j
and the hidden node i is denoted by ŵ

(1)
aij (t), for i = 1, . . . ,Nha

and j = 1, . . . ,m. ŵ(2)
aij (t), where i = 1, . . . , n, j = 1, . . . ,Nha

is the weight from j′s hidden node to i′s output. The weighted
sum of all inputs, i.e., the input to a hidden node k is given as
σak(t) =

m
j=1 ŵ

(1)
akj (t)xj(t). The output of hidden node k of the

action network is denoted by φak(t).
For neural networks a variety of transfer functions are in use,

see, e.g. Zhang, Liu et al. (2013). Hyperbolic tangent is a common



Download	English	Version:

https://daneshyari.com/en/article/7109679

Download	Persian	Version:

https://daneshyari.com/article/7109679

Daneshyari.com

https://daneshyari.com/en/article/7109679
https://daneshyari.com/article/7109679
https://daneshyari.com/

