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a b s t r a c t

Control of systems governed by the two-dimensional linear wave equation in finite spatial domain is
considered and presented through vibrating rectangular membranes. The membranes are modeled by
modal decomposition in one spatial axis and infinite dimensional transfer functions in the other. The
transfer functions are built of fractional order exponents, regarded as non-pure delays, which are shown
to represent traveling waves whose shape changes during motion. The membranes are controlled in
closed loop to achieve position profile tracking and attenuation of disturbances. The actuation is along
two opposite boundaries, which controls the entire wave motion between them. The control algorithm
stops thewave propagation in the control axis by creating active non-reflecting boundaries. In addition, it
compensates the remaining non-pure delay by extending the classical dead time compensation principle.
As a result, despite the infinite dimension of the system and its fractional order transfer functions, the
closed loop transfer function is given by a rational first order lag with a pure time delay. The resulting
controllers are also of fractional order and their implementation is obtained by dedicated approximations.
The system stability with the approximated controllers is investigated formally using robustness tools.
The control algorithm is demonstrated by means of several examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The linear wave equation is encountered in diverse fields of en-
gineering such as mechanics, acoustics, and electromagnetics. In
mechanics, the wave equation describes the vibrations of flexible
structures that have no resistance to bending, (Kreyszig, 2010). In
the case of a single spatial dimension (1D) these are vibrations of
strings or rods, whereas for two dimensions (2D) these are vibra-
tions of membranes. Membranes are widely employed in space
applications due to their light weight and low packing volume,
(Jenkins, 2001; Ruggiero & Inman, 2006). However, flexibility has
adverse effects as well. Tracking maneuvers or the action of dis-
turbances will excite the flexible modes, resulting in an undesired
vibration. While passive rigidization would simply result in heav-
ier structures, the alternative is active rigidization via control algo-
rithms.
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Since the wave equation is a partial differential equation (PDE),
the use of standard controlmethods is not straightforward. Several
methods to control systems governed by PDE’s exist (see, e.g. the
review by Padhi and Ali (2009)). One common practice is first to
approximate the continuous medium by spatially discrete models,
which can be achieved either bymodal truncation, by the Finite El-
ement (FE) method or even by experimentally obtained frequency
response, and then to control it by state space techniques. This is
the approach, for example, in Balas (1978) and Hu (2008) for the
control of 1D flexible structures and in Kukathasan and Pellegrino
(2002) and Sakamoto, Park, and Miyazaki (2006) for the control
of membranes. However, the use of approximated models carries
some disadvantages. First, for high accuracy the approximations
should have very high order, which practically prevents the use of
common systematic control methods. Secondly, the system phys-
ical characteristics, such as traveling waves and the associated de-
lays are lost in the approximation process. In methods that are not
based on approximations the controller is incorporated directly in
the PDE. Such methods are used in Guo and Jin (2013) and Krstic,
Guo, Balogh, and Smyshlyaev (2008) for stabilization of an unstable
wave equation.

A different approach is modeling the continuous systems by
infinite dimensional (irrational) transfer functions (TF),which arise
from applying the Laplace transform directly to the PDE (see a
tutorial by Curtain and Morris (2009)). This approach is adopted
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Fig. 1. A rectangular membrane (illustration).

e.g. in Alli and Singh (2000) to control the 1Dwave equation by root
locus and optimization methods, or in Saito and Katsura (2013) to
control amulti-mass resonant systembywave absorption strategy.
In a series of publications (Halevi, 2005; Halevi & Peled, 2010;
Sirota&Halevi, 2010, 2012), the infinite dimensional TFswere used
tomodel flexible rods in torsion (1Dwave equation) with a general
linear set of boundary conditions (BC). The TF model consisted of
exponents that are linear in s and of loworder rational terms. These
pure time delay exponents exhibit the travelingwaves phenomena
in the structure, whereas the rational parts represent the reflection
of waves from the boundaries. The model was then used to design
a dedicated control algorithm (with boundary actuation) that stops
the wave reflections, achieving absolute vibration suppression
(AVS) in the system.

The goal of this work is to extend the infinite dimensional TF
modeling and the consequent wave based control approach to
systems governed by the 2D wave equation, such as the mem-
brane shown in Fig. 1. However, the additional spatial dimen-
sion complicates matters, since unlike the 1D wave equation,
application of Laplace transform in the 2D case still yields a PDE.
Our approach is therefore to represent the system by a combina-
tion of modal decomposition in one spatial direction (the lateral
axis y) and of infinite dimensional TFs in the other (the longitudi-
nal axis x). These TFs consist of fractional order exponents, which
represent non-pure time delays and describe the specialmanner of
wave propagation in the system.We exploit thismodel to track the
structure position in closed loop using actuation along the bound-
aries x = 0 and x = a. More specifically, we wish to track the
structure position at the x center-line along a desired y profile. For
each controlled y mode our strategy is first to eliminate the wave
reflections in the x axis and then to compensate for the remaining
non-pure delay. This requires the extension of the AVSmethod and
of the standard dead time compensation algorithm, (Smith, 1957),
to TFs with fractional order exponents.

2. Systemmodel and open loop response

2.1. Problem statement and solution in Laplace domain

As a representative example we consider a taut rectangular
membrane of length a andwidth b, as illustrated in Fig. 1. Assuming
small deflections and negligible internal damping, the membrane
is governed by the 2D wave equation,

1
c2

d2

dt2
W (x, y, t)−

d2

dx2
W (x, y, t)−

d2

dy2
W (x, y, t)

=
1
T Ψ (x, y, t), (1)

where W (x, y, t) is the vertical deflection, c =
√
T/ρ is the wave

propagation velocity, ρ is the areal density and T is the tension in

the x–y plane. The membrane is subjected to a distributed force
Ψ (x, y, t) (disturbance) and to the boundary forces F0(y, t) and
Fa(y, t) along x = 0 and x = a (control action), respectively. The
boundaries y = 0 and y = b are free and the BC are therefore given
by

−T d
dxW (0, y, t) = F0(y, t), (2a)

T d
dxW (a, y, t) = Fa(y, t), (2b)

d
dyW (x, 0, t) =

d
dyW (x, b, t) = 0. (2c)

We are interested in a traveling wave form of the response, hence
we attend the problem via Laplace domain. Laplace transformwith
respect to time of (1) gives s

c

2 W (x, y; s)−
d2

dx2
W (x, y; s)−

d2

dy2
W (x, y; s)

=
1
T Ψ (x, y; s), (3)

where W (x, y; s) is the transform of W (x, y, t), etc. Similarly,
we apply the Laplace transform to the BC. As was stated in the
introduction, we model the system by a combination of modal
decomposition in one spatial direction and infinite dimensional TFs
in the other. Let the modal direction be the lateral, we suggest the
solution of (3) in the form

W (x, y; s) =

∞
n=0

wn(x; s)ϕn(y). (4)

Substituting (4) in (3) and considering its homogeneous part
(i.e. Ψ (x, y; s) = 0), the nth solution of the lateral component
becomes

ϕn(y) = Aneiqny + Bne−iqny (5)

for some constant An, Bn and qn. Applying to (5) the homogeneous
BC (2c), we obtain

An = Bn, qn =
nπ
b , ϕn(y) = cos(qny), (6)

where qn and ϕn(y) are the lateral eigenvalues and eigenfunctions.
An was set arbitrarily to unity as it will be merged with the
coefficients of wn(x; s). Expanding the distributed force by ϕn(y),
gives

Ψ (x, y; s) =

∞
n=0

ψn(x; s)ϕn(y), (7)

which is a cosine Fourier series with the coefficients ψn(x; s).
Substituting (7) in (3) and using the fact that d2/dy2ϕn(y) =

−q2nϕn(y), ϕn(y) can be eliminated. The nth equation of the
longitudinal part then becomes

d2

dx2
wn(x; s)−


αn(s)
c

2
wn(x; s)+

1
Tψn(x; s) = 0, (8)

where

αn(s) =


s2 + c2q2n. (9)

The solution of ODE (8), which is the nth longitudinal open loop
response component, is given by

wn(x; s) = C1n(s)e
x
c αn(s) + C2n(s)e

−
x
c αn(s)

−
c

2Tαn(s)

 x

0


e
x−ξ
c αn(s)

− e−
x−ξ
c αn(s)


×ψn(ξ ; s)dξ . (10)
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