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a b s t r a c t

This paper proposes a clustered model reduction method for semistable positive linear systems evolving
over directed networks. In this method, we construct a set of clusters, i.e., disjoint sets of state variables,
based on a notion of cluster reducibility, defined as the uncontrollability of local states. By aggregating
the reducible clusters with aggregation coefficients associated with the Frobenius eigenvector, we obtain
an approximate model that preserves not only a network structure among clusters, but also several
fundamental properties, such as semistability, positivity, and steady state characteristics. Furthermore,
it is found that the cluster reducibility can be characterized for semistable systems based on a projected
controllability Gramian that leads to an a priori H2-error bound of the state discrepancy caused by
aggregation. The efficiency of the proposed method is demonstrated through an illustrative example
of enzyme-catalyzed reaction systems described by a chemical master equation. This captures the time
evolution of chemical reaction systems in terms of a set of ordinary differential equations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many dynamical systems of interest to control community
are inherently constructed from subsystem interconnections.
Examples of such interconnected systems include power grids,
transportation networks and so forth; see Boccaletti, Latora,
Moreno, Chavez, and Hwang (2006) for an overview. Since the
network structure of such systems is often complex and large-
scale, it is crucial to develop an approximationmethod that enables
us to reduce their complexity (dimension). In addition, it is more
desirable to preserve some particular properties of these systems,
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such as a network structure, stability, and positivity, throughout
the approximation. This kind of structure-preserving model
reduction has the potential to significantly simplify to analyze
large-scale systems while capturing their essential properties of
interest.

A number of model reduction methods can be found in the
literature (Antoulas, 2005). For instance, model reductionmethods
inspired by principal component analysis, such as the balanced
truncation (Enns, 1984) and the Hankel norm approximation
(Lin & Chiu, 1990), are well known. A major advantage of these
methods is the availability of an error bound in terms of the
H∞-norm or Hankel norm. Furthermore, the class of moment
matching methods, including the Krylov subspace methods, is also
well known (Gugercin & Willcox, 2008). This class of methods
aims to suppress discrepancies in the system behavior for specific
input signals, and has the advantage of a computationally efficient
implementation. However, unlike the former class of methods,
a priori error bounds have not yet been derived. For these
existing model reduction, a systematic procedure is provided.
However, they have a drawback in terms of their application
to network system: the network structure of systems, i.e., the
interconnection topology among state variables or subsystems, is
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destroyed through the approximation. This is because each state of
the resultant approximants is constructed by a linear combination
of all the original states. Therefore, to practically approximate a
network system, it is crucial to develop a model reduction method
that explicitly preserves the network structure of the system.

One approach to network structure-preserving model reduc-
tion can be an extension of structure-preserving model reduc-
tion methods found in the literature. For example, van der Schaft
and Polyuga (2009) address a model reduction problem that con-
siders the preservation of the second-order structure. However,
this problem is not formulated on the premise of network struc-
ture preservation. In contrast to the existing approach, a clus-
tered model reduction method has been developed for stable
systems evolving over undirected, or bidirectional networks
(Ishizaki, Kashima, Imura, & Aihara, 2014). In this method, by fo-
cusing on the symmetry of systemmatrices, we have introduced a
system transformation, called positive tridiagonalization, to char-
acterize the cluster reducibility, defined as the uncontrollability of
disjoint subsets, or clusters, of state variables. The aggregation of
reducible clusters yields an approximate model that preserves the
network structure among clusters and the stability of systems, and
provides an error bound in terms of the H∞-norm. However, the
applicability of this clustered model reduction is rather restricted
because both stability preservation and reducibility characteriza-
tion are heavily reliant on the symmetry of the system matrices.
From a practical point of view, it is crucial to improve the applica-
bility of our clustered model reduction framework.

One major difficulty confronted by network structure-
preservingmodel reduction involves preserving the stability of the
original system in its approximants. To enable the systematic de-
velopment of clustered model reduction, it is important to clarify
the class of systems to which it can reasonably be applied. In Fa-
rina andRinaldi (2000), it has been found that stability analyses can
be tractably performed for a class of systems admitting a positive
property, called (internally) positive systems.More specifically, the
stability of positive systems can be characterized by an eigenpair,
called the Frobenius eigenvalue and eigenvector. In fact, clustered
model reduction has good compatibility with the approximation
of positive systems because, as long as we make the aggregation
coefficients non-negative, the positivity property of systems can
be preserved in its approximants. In this paper, we use this com-
patibility to show that the semistability of positive systems can be
preserved by a selection of aggregation coefficients specified by the
Frobenius eigenvector. Moreover, we derive an alternative charac-
terization of cluster reducibility based on a projected controllabil-
ity Gramian. Owing to this development, we can apply clustered
model reduction to semistable positive systems, called positive di-
rected networks, involving compartmental systems, and Marko-
vian processes (Farina & Rinaldi, 2000).

To demonstrate the improved applicability, we provide an illus-
trative example of a chemical master equation (CME) compatible
with enzyme-catalyzed reaction systems. It is known that CMEs
belong to a class of Markovian processes (Higham, 2008; Munsky
& Khammash, 2008), which can be regarded as a semistable pos-
itive directed network. Since the dimension of CMEs tends to be
large, they are not necessarily analytically or numerically tractable.
To overcome this difficulty, the proposed clustered model reduc-
tion method produces an aggregated model that preserves sev-
eral fundamental properties asMarkovianprocesses. A preliminary
version of this paperwas published in Ishizaki et al. (2012). In com-
parison with it, this paper provides detailed proofs and explana-
tions for our theoretical results.

The remainder of this paper is structured as follows: In Sec-
tion 2, we first formulate a clustered model reduction problem for
positive directed networks. In Section 3, we characterize the clus-
ter reducibility using a projected controllability Gramian, and de-
velop a clusteredmodel reductionmethod. Section 4 demonstrates

Fig. 1. Depiction of positive directed networks.

the efficiency of the proposed method through an illustrative ex-
ample of CMEs. Finally, concluding remarks are provided in Sec-
tion 5.
Notation R: the set of real numbers, R>0 (R≥0): the set of positive
(non-negative) real numbers, N: the set of non-negative integers,
In: the n-dimensional identity matrix, |I|: the cardinality of a set
I, im(M): the image of a matrix M, ∥M∥F: the Frobenius norm
of a matrix M , diag(v): the diagonal matrix having a vector v on
its diagonal, Diag(M1, . . . ,Mn): the block diagonal matrix having
matricesM1, . . . ,Mn on its block diagonal.

For I ⊆ {1, . . . , n}, let enI ∈ Rn×|I| denote the matrix com-
posed of the column vectors of In compatible with I. A square ma-
trix M (respectively, a transfer matrix G) is said to be semistable if
all eigenvalues of M (poles of G) are in the closed left-half plane,
and all eigenvalues (poles) with zero real value are simple roots. A
square matrixM is said to be reducible if it can be placed into block
upper-triangular form by simultaneous row and column permuta-
tions. Conversely, M is said to be irreducible if it is not reducible.
Furthermore, M is said to be Metzler if the off-diagonal entries of
M are all non-negative. The positive (negative) semidefiniteness
of M = MT

∈ Rn×n is denoted by M ≽ On (M ≼ On). Its positive
(negative) definiteness is denoted similarly. TheH∞-normof a sta-
ble proper transfer matrix G and the H2-norm of a stable strictly
proper transfer matrix G are denoted by ∥G∥H∞ and ∥G∥H2 .

2. Problem formulation

2.1. Preliminaries

In this paper, we deal with a class of positive linear systems
evolving over directed networks. We denote a set of irreducible
Metzler matrices by

Mn := {M ∈ Rn×n
: irreducible, Metzler}. (1)

In this notation, we define the following class of positive systems:

Definition 1. A linear system

Σ : ẋ = Ax+ Bu (2)

is said to be a positive directed network if A ∈ Mn and B ∈ Rn×m
≥0 .

This class of systems includes spatially-discrete reaction–
diffusion systems, electrical circuit networks, continuous-time
Markovian processes, and so forth. Their state trajectory does not
escape from the non-negative orthant Rn

≥0 under non-negative
input signals and initial conditions. Such systems having the non-
negative property often appear in science and engineering (Farina
& Rinaldi, 2000). With the notation of A = {ai,j} and B = {bi,j},
Fig. 1 depicts the interconnection topology (network structure) of
positive directed networks. Note that the irreducibility of A ∈ Mn
assumed in (1) coincides with the strong connectivity of networks,
which can be relaxed under a suitable situation; see Section 3.4 for
details.
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