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a b s t r a c t

This paper studies the synchronization problem of second-order nonlinear multi-agent systems with
intermittent communication in the presence of irregular communication delays and possible information
losses. The control objective is to steer all agents’ positions to a commonpositionwith a prescribed desired
velocity available only to some leaders. Based on the small-gain framework,we propose a synchronization
scheme relying on an intermittent information exchange protocol in the presence of time delays and
possible packet dropouts. We show that our control objectives are achieved with a simple selection of the
control gains provided that the directed graph, describing the interconnection between agents, contains
a spanning tree. An example of Euler–Lagrange systems is considered to illustrate the application and
effectiveness of the proposed approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Motion coordination of nonlinear multi-agent systems has re-
cently received increased interest in the control community due
to potential applications involving groups of robotic systems and
autonomous vehicles in general (Ren & Cao, 2011). The coordina-
tion problem of multi-agent systems can be formulated as a syn-
chronization or a consensus problem, where the goal is to drive
the networked subsystems (or agents) to a common state us-
ing local information exchange. Other related problems include
flocking, swarming, and formation control of mechanical systems.
Built around the existing solutions of the consensus problem for
linear multi-agent systems, several coordinated control schemes
have been recently developed for second-order nonlinear dynam-
ics, which can describe various mechanical systems, with partic-
ular interest to leaderless synchronization, cooperative tracking
with full access to the reference trajectory, and leader–follower
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problems (see, for instance, Abdessameud & Tayebi, 2009; Cai &
Huang, 2014; Chen & Lewis, 2011; Dimarogonas, Tsiotras, & Kyri-
akopoulos, 2009; Liu, Xie, Ren, &Wang, 2013;Mei, Ren, Chen, &Ma,
2013; Mei, Ren, & Ma, 2011, 2012; Meng, Dimarogonas, & Johans-
son, 2014; Su, Chen,Wang, & Lin, 2011;Wang, 2013; Zou, 2014, and
references therein). Algebraic graph theory, matrix theory, and the
Lyapunov direct method have been shown useful to address vari-
ous problems related to the systems dynamics, such as uncertain-
ties, and the interconnection topology between the teammembers.

In addition, various recent papers address the synchronization
problem of nonlinear systems by taking into account delays
in the information transfer between agents, which is generally
performed using communication channels. In Chopra and Spong
(2006), it has been shown that output synchronization of nonlinear
passive systems is robust with respect to constant communication
delays if the interconnection graph is directed, balanced, and
strongly connected. In Münz, Papachristodoulou, and Allgöwer
(2011), a delay-robust control scheme is proposed for relative-
degree two nonlinear systems with nonlinear interconnections.
With the same assumption on the delays, adaptive synchronization
schemes have been proposed in Nuño, Ortega, Basañez, and
Hill (2011) and Wang (2014) for networked robotic systems
under a directed graph. In addition to constant delays, a virtual
systems approach has been suggested in Abdessameud and Tayebi
(2011b, 2013) to account for input saturations and remove the
requirements of velocity measurements. Control schemes that
consider time-varying communication delays have also been
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proposed for some second-order nonlinear multi-agent systems
in Abdessameud and Tayebi (2011a, 2013); Abdessameud, Tayebi,
and Polushin (2012); Erdong, Xiaolei, and Zhaowei (2008);
Nuño, Sarras, and Basañez (2013), in the case of undirected
interconnection graphs, and in Abdessameud, Polushin, and Tayebi
(2014a) in the case of more general directed interconnection
topologies.

One important problem when dealing with second-order non-
linear systems in the presence of communication delays is to
achieve position synchronization, i.e., convergence of all positions
to a common value, with some non-zero final velocity. In fact, in
most of the above mentioned synchronization laws with commu-
nication delays, a static leader or no leader are assumed and posi-
tion synchronization is achieved with zero final velocity. The only
cases where the final velocities match a non-zero value assume a
full access to a reference trajectory or to a leader’s states (position
and velocity). Another issue that can be observed in all the afore-
mentioned results is the assumption that information is transmit-
ted continuously between agents. In fact, it is not clear if these
results still apply in situations where agents are allowed to com-
municate with their neighbors only during some disconnected
intervals (or at some instants) of time. This can be induced by
environmental constraints, such as communication obstacles, tem-
porary sensor/communication-link failure, or imposed to the
communication process to save energy/communication costs in
mobile agents. For linear first-order multi-agent systems, Sun and
Wang (2009) have proposed a discontinuous algorithm achieving
state consensus using intermittent communication in the presence
of sufficiently small constant communication delays and bounded
packet dropout. Consensus algorithms with intermittent commu-
nication have also been proposed for higher-order linear multi-
agent systems (Gao &Wang, 2010; Wen, Duan, Ren, & Chen, 2013)
and for a class of globally Lipschitz nonlinear systems (Wen, Duan,
Li, & Chen, 2012) without communication delays.

In this paper, we consider the synchronization problem of
a class of second-order nonlinear systems with intermittent
communication in the presence of communication delays and
possible packet losses. Here, it is required that all systems achieve
position synchronization with some non-zero desired velocity
available only to some systems in the group acting as leaders.
Based on the small-gain approach,wepropose a distributed control
algorithm that achieves our control objective in the situation
where the agents are allowed to communicatewith their neighbors
only at some irregular discrete time instants. A discrete-time
consensus algorithm is also used to handle the partial access to
the desired velocity. In the case where no desired velocity is
assigned to the team, the proposed algorithm achieves position
synchronization with some constant final velocity agreed upon
by all agents. In both cases, it is proved that, under some
sufficient conditions, synchronization is achieved in the presence
of unknown irregular communication delays and packet losses
provided that the interconnection topology between agents is
described by a directed graph that contains a spanning tree. The
derived conditions impose a maximum allowable interval of time
during which a particular agent does not receive information
from some or all of its neighbors. This interval, however, can be
assigned arbitrarily by a choice of the control gains. To illustrate
the applicability of the proposed approach, we derive a solution to
the above problems in the case of networked Lagrangian systems,
and simulation results that show the effectiveness of the proposed
approach are given.

2. Background and problem formulation

2.1. Graph theory

Let G = (N , E) be a directed graph, with a set of nodes (or
vertices)N , and a set of ordered edges (pairs of nodes) E ⊆ N ×N .

An edge (j, i) ∈ E is represented by a directed link (arc) leaving
node j and directed toward node i. A directed graph G is said to
contain a spanning tree if there exists at least one node that has a
‘‘directed path’’ to all the other nodes in the graph; by a directed
path (of length q) from j to i is meant a sequence of edges in a
directed graph of the form (j, l1), (l1, l2), . . . , (lq−1, lq), with lq = i,
where for q > 1 the nodes j, l1, . . . , lq−1 ∈ N are distinct. Node r
is called a root of G if it is the root of a directed spanning tree of G;
in this case, G is said to be rooted at r .

Given two graphs G1 = (N , E1), G2 = (N , E2) with the same
vertex set N , their composition G3 := G1 ◦ G2 = (N , E3) is the
graph with the same vertex set N , where (j, i) ∈ E3 if and only
if (j, l) ∈ E2 and (l, i) ∈ E1 for some l ∈ N . Composition of any
finite number of graphs is defined by induction. In the case where
G1 and G2 contain self-links at all nodes, the edges of G1 and G2 are
also edges of G3. In this case, the definition above also implies that
G3 contains a path from j to i if and only if G2 contains a path from j
to l and G1 contains a path from l to i. A finite sequence of directed
graphs G1, G2, . . . ,Gq with the same vertex set is jointly rooted if
the composition Gq ◦Gq−1 ◦ · · · ◦G1 is rooted. An infinite sequence
of graphs G0,G1, . . . is said to be repeatedly jointly rooted if there
exists k∗

∈ Z+ such that for any σ ∈ Z+ the finite sequence
Gσ ,Gσ+1, . . . ,Gσ+k∗ is jointly rooted (see Cao, Morse, & Anderson,
2008 for more details on graph composition).

A weighted directed graph Gw consists of the triplet (N , E,A),
where N and E are, respectively, the sets of nodes and edges
defined as above, and A is the weighted adjacency matrix defined
such that aii , 0, aij > 0 if (j, i) ∈ E , and aij = 0 if (j, i) ∉ E .
Note that thus defined weighted graph does not contain self-links
at any node and will have the same properties as the unweighted
graph with the same sets of nodes and edges. The Laplacian matrix
L := [lij] ∈ Rn×n of the weighted directed graph Gw is defined such
that: lii =

n
j=1 aij, and lij = −aij for i ≠ j.

2.2. System model

Consider n not necessarily identical second-order nonlinear
systems (or agents) governed by

ṗi(t) = vi(t),
v̇i(t) = Fi(pi(t), vi(t), ui(t)),

i ∈ N , (1)

where pi ∈ Rm and vi are the position-like and velocity-like states,
respectively, ui ∈ Rm are the inputs, and N := {1, . . . , n}. The
functions Fi are assumed to be locally Lipschitz with respect to
their arguments. Note that Eqs. (1) may describe the full or partial
dynamics of various physical systems.

The systems (1) are interconnected in the sense that some in-
formation can be transmitted between agents using communica-
tion channels. This interconnection is represented by a directed
graph G = (N , E), where N is the set of all agents, and an edge
(j, i) ∈ E indicates that the ith agent can receive information from
the jth agent; in this case, we say that j and i are neighbors (even
though the link between them is directed). While the interconnec-
tion graph G is fixed, the information exchange between agents is
not continuous but discrete in time and is subject to communica-
tion constraints as described in the next subsection.

2.3. Communication process

In this paper, we consider the case where the communication
between agents is intermittent and is subject to time-varying
communication delays, information losses, and blackout intervals.
Specifically, it is assumed that there exists a strictly increasing and
unbounded sequence of time instants tk := kT ∈ R+, k ∈ Z+ =

{0, 1, . . .}, where T > 0 is a fixed sampling period common for
all agents, such that each agent is allowed to send its information
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