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A lot of problems in automatic control aim at seeking top designs for discrete-event systems. In many
cases, these problems are most suitable to be modeled as simulation optimization problems, and a key
question for solving these problems is how to efficiently and accurately select the top designs given a
limited simulation budget. This paper considers the generalized problem of selecting the top m designs
from a finite set of design alternatives based on simulated outputs, subject to a constraint on the total

number of samples available. The quality of the selection is measured by the expected opportunity cost,
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which penalizes particularly bad choices more than the slightly incorrect selections and is preferred
by risk-neutral practitioners and decision makers. An efficient simulation budget allocation procedure,
called EOC-m, is developed for this problem. The efficiency of the proposed method is illustrated through

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete-event systems (DES) simulation is a powerful tool for
analyzing systems and evaluating decision problems, since real sit-
uations usually do not satisfy the assumptions of analytical mod-
els. DES simulation makes it possible to accurately specify a system
through the use of logically complex, and often non-mathematical
models. Detailed dynamics of complex, stochastic systems can
therefore be modeled (Chen & Lee, 2011). Examples such as queue-
ing systems, inventory control, buffer allocation, pollution control,
and portfolio management fall into the applicable areas of DES sim-
ulation (Law & Kelton, 2000).

While DES simulation has many advantages for modeling com-
plex systems, efficiency is still a significant concern when con-
ducting simulation experiments (Law & Kelton, 2000). To acquire
a good statistical estimate for a design decision, a large number of
simulation replications is usually required for each design alterna-
tive. An estimate of the mean of a design typically has errors of size
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o/ VN ), the result of averaging independent and identically dis-
tributed (i.i.d.) noise, where N is the number of simulation repli-
cations. On the other hand, we usually have a budget constraint
for simulation in practice, for instance, a decision has to be made
within ten hours. Consequently, the problem of how to efficiently
allocate the simulation budget to select good designs has drawn
great attention.

Most existing research in simulation budget allocation focuses
on selecting the best design. Typically there are two main measures
of selection quality and three main approaches in this respect. The
alignment probability or the probability of correct selection (PCS)
is one commonly studied measure of performance (Bechhofer,
Santner, & Goldsman, 1995). This is defined as the probability of
selecting the best design. The other broadly used quality measure
is the expected opportunity cost (EOC), which is defined as the
difference in means between the selected design and the best
one (Chick & Inoue, 2001a,b; Chick & Wu, 2005).

The indifference-zone (IZ) approach aims to provide a guaran-
teed lower bound for PCS, assuming that the mean performance of
the best design is at least 6* better than each alternative, where
§* is the minimum difference worth detecting (Dudewicz & Dalal,
1975; Kim & Nelson, 2001; Nelson, Swann, Goldsman & Song, 2001;
Rinott, 1978). The optimal computing budget allocation (OCBA)
method allocates the samples sequentially in order to maximize
PCS or minimize EOC under a budget constraint (Chen & Lee, 2011;
Chen, Lin, Yiicesan & Chick, 2000; He, Chick, & Chen, 2007). The
expected value of information (EVI) procedure allocates samples
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to maximize the EVI obtained from sampling in two stages or se-
quentially using predictive distributions of further samples (Chick
& Inoue, 2001a,b).

Another important selection problem in simulation budget al-
location is to select the top m designs for m > 1 instead of the sin-
gle best design. The selection of the top m designs is most useful
for problems in automation, manufacturing, and other engineer-
ing applications when the designs for comparison have multiple
dimensions of performance measurements with some qualitative
criteria such as environmental consideration or political feasibil-
ity. The selection procedure provides the top m designs for the
decision maker so that the final decision can be made in a more
flexible way by incorporating other qualitative performance mea-
surements than just the quantitative performance measurement.
In addition, the problem of selecting an optimal subset is also mo-
tivated by recent developments in global simulation optimization
algorithms, which require the selection of an elite subset of good
candidate solutions in each iteration of the algorithm (Chambers,
1995; Hu, Fu, & Marcus, 2007, 2008; Rubinstein & Kroese, 2004).
The information from the elite set is used to guide the search
in subsequent iterations for the global optimum. Since the per-
formance of these algorithms depends heavily on the quality of
the selected solutions, how to efficiently select an optimal subset
then becomes a critical problem for implementation of these algo-
rithms.

For the optimal subset selection problem, a two-stage proce-
dure was established in Koenig and Law (1985) to provide a PCS
guarantee. However, the number of additional simulation replica-
tions for the second stage is computed based on a least favorable
configuration and causes the computational cost to be much higher
than actually needed. A sequential subset selection procedure was
developed in Chen, He, Fu, and Lee (2008), which maximizes PCS
using the OCBA method and turns out much more efficient than
some other selection procedures in the literature.

In this research, we propose to develop an efficient simulation
budget allocation procedure to select the top m designs using
the EOC measure, called EOC-m. Compared to PCS, EOC takes
the consequence of incorrect selection into consideration and
is particularly useful for risk-neutral practitioners and decision
makers (He et al.,, 2007). For example, suppose there are 100
systems and systemi has a cost ofi,i = 1, 2, ..., 100. We want to
select three systems that minimize the total cost. Then, the correct
selection is systems 1, 2 and 3. For PCS, the selections of systems
4,5, 6 and 98, 99, 100 are treated equally because they are both
wrong selections from PCS point of view. However, the choice of
systems 4, 5 and 6 is much more favorable than 98, 99 and 100 in
practice because systems 4, 5 and 6, though not optimal, cost much
less than 98, 99 and 100. That is, the opportunity cost of systems
4,5 and 6 is much less. By using the EOC measure, the selection of
98, 99 and 100 is much more unlikely to appear than the selection
of 4, 5, and 6, if a wrong selection is made, and the risk of making
a very bad selection is thus avoided. This motivates the use of EOC
as the quality measure when selecting the top m designs. To the
best of our knowledge, this is the first work addressing the subset
selection problem for the EOC quality measure.

The rest of the paper is organized as follows. In Section 2, we
formulate the simulation budget allocation problem for selecting
the top m designs. In Section 3, we develop a new and efficient
budget allocation strategy. The performance of the proposed
method is illustrated with numerical examples in Section 4.
Section 5 concludes the paper.

2. Problem statement

This section presents a formulation of the selection problem.
In this research, the best design is defined as the design with the
smallest mean performance (the largest mean performance could
be handled similarly). We introduce the following notation:

T: total number of simulation replications (budget);

k: total number of designs;

L; j: output of the jth simulation replication for design i;
JirmeanofL;j,i.e.,J; = E[L];

of: variance of L;, i.e,, o = Var[L;;

N;: number of simulation replications for design i;

Ji- sample mean of design i, i.e., J; = Nll ]'.VZ"] Lij;

Sp: set of m indices indicating the observed top m designs;
S¢: set of m indices indicating the true top m designs;

8ij =1Ji —Jjs

ol = o} /Ni + o} /N;.

We assume no ties in means among the designs in S;. Let design
bi € S, be the observed ith best design and design t; € S
be the true ith best design, ie., J,, < Jp, < < Jp, and
Jo < Jo < -+ < Ju,- To make the derivation more tractable,
we also assume that the simulation output samples are normally
distributed and independent from replication to replication, as
well as independent across different designs. As a result, L;; ~

- 2

N(;, a,-z) and J; ~ N(J;, ‘;]—’l) The normality assumption is typically
satisfied in simulation, because the output is obtained from an
average performance or batch means, so that the Central Limit
Theorem holds.

A correct selection occurs when the set of true top m designs
S; is observed, and the expected opportunity cost for the set of
observed top m designs S, is defined as:

EOCm:E[ZJi—Z]i] (1)

ieSy ieSt

Consequently, the simulation budget allocation problem is given
by

min EOC,,

k
s.t. ZNi =T. (2)
i=1

Here Z;;l N; denotes the total computational cost assuming that
the simulation execution times for different designs are the same.
This formulation is in a similar format of the OCBA framework. The
simulation budget allocation problem given in He et al. (2007) is a
special case of (2) withm = 1.

3. Efficient simulation budget allocation

In this section we derive a convenient approximation for
the EOC,, in optimization problem (2) and design an efficient
sequential simulation budget allocation procedure accordingly.

3.1. EOG,, approximation

A major difficulty for problem (2) is that the objective function
EOC,, does not have a closed-form expression. Although EOC,,
can be estimated using Monte Carlo simulation, it is very time-
consuming. Since the purpose of budget allocation is to improve
simulation efficiency, we adopt an approximation of EOC,; using
an upper bound.

Theorem 1. Denote & as the cumulative distribution function of
standard normal distribution. The EOC,, can be bounded as
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