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a b s t r a c t

The LuGre friction model is used in the current literature to describe the friction phenomenon for
mechanical systems. In this paper, we focus on the hysteresis behaviour of the model. More precisely,
we describe analytically the hysteresis loop of the model through the concepts of consistency and strong
consistency. The description is illustrated by numerical simulations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Friction is a nonlinear phenomenon that originates from the
contact of two bodies. It has two types of characteristics, static
and dynamic. The static characteristics of friction include the stic-
tion friction, the kinetic force (the Coulomb force), the viscous
force, and the Stribeck effect which are functions of steady state
velocity. The static friction models give the friction force as a
function of velocity and only describe the steady-state behaviour
between velocity and friction force. Static friction models are dis-
continuous at zero velocity with a dependence on the sign of ve-
locity (Armstrong-Hélouvry, Dupont, & Canudas De Wit, 1994).

This discontinuity does not reflect accurately the real fric-
tion behaviour and may cause errors in numerical simulations, or
even instability in the algorithms designed to compensate fric-
tion (Armstrong-Hélouvry et al., 1994).

Dynamic friction models capture properties that cannot be
captured by typical static friction models; for instance, presliding
displacement related to the elastic and plastic deformations of
asperities, frictional lag, that is the delay in the change of friction
force as a function of a change of velocity, and stick–slip motion.
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Thesemodels do not present a discontinuity at zero velocity which
makes them more suitable for numerical simulations and friction
compensation (Armstrong-Hélouvry et al., 1994).

Dahl friction model is a dynamic model whose steady-state is
the Coulomb friction (Dahl, 1976). The main contribution of the
model is that it takes into account the existence of hysteresis
between the presliding friction force input and the displacement
output that is observed experimentally (Armstrong-Hélouvry et al.,
1994). However, Dahl model does not capture the Stribeck effect.
An improvement of this model is implemented in the LuGre
model (Canudas de Wit, Olsson, Åström, & Lischinsky, 2000)
which captures some essential properties of friction such as
hysteresis and Stribeck effect and thus can describe stick–slip
motion (Åström & Canudas-de-Wit, 2008). Therefore, it has
been used to describe the friction phenomenon for mechanical
systems (Åström & Canudas-de-Wit, 2008; Padthe et al., 2008).
Necessary and sufficient conditions for the dissipativity of the
LuGre model are given in Barahanov and Ortega (2000). Also,
the model has been used for friction compensation (Freidovich,
Robertsson, Shiriaev, & Johansson, 2010; San, Ren, Ge, Lee, & Liu,
2011; Swevers, Al-Bender, Ganseman, & Projogo, 2000).

In this paper, we focus on the hysteresis behaviour of the LuGre
model. More precisely, we investigate the analytical expression
of the hysteresis loop of the model through the concepts
of consistency and strong consistency (Ikhouane, 2013). These
concepts are particularly useful when dealing with rate-dependent
hysteresis as is the case of the LuGre model. The reader is referred
to Ikhouane (2013) for amore detailed explanation andmotivation
of the concepts of consistency and strong consistency.

The paper is organized as follows. Section 2 presents the
needed background from Ikhouane (2013). The problem statement
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is formulated in Section 3. The main results of this paper are
presented in Section 4. These results are commented upon is
Section 5, and a simulation example is provided in Section 6. The
conclusion is given in Section 7.

2. Background results

This section summarizes the results obtained in Ikhouane
(2013).

2.1. Class of inputs

The Lebesgue measure on R is denoted µ. For a measurable
function p : I ⊂ R+ → Rm, ∥p∥∞,I denotes the essential supre-
mum of |p| on I where | · | is the Euclidean norm on Rm. When
I = R+, it is denoted ∥p∥∞.

Consider the Sobolev space W 1,∞(R+,Rn) of absolutely
continuous functions u : R+ → Rn, where n is a positive integer.
For this class of functions, the derivative u̇ is defined a.e., and we
have ∥u∥∞ < ∞, ∥u̇∥∞ < ∞.

For u ∈ W 1,∞(R+,Rn), let ρu : R+ → R+ be the total variation
of u on [0, t], that is ρu(t) =

 t
0 |u̇(τ )| dτ ∈ R+. The function ρu

is well defined, nondecreasing and absolutely continuous. Observe
that ρu may not be invertible. Let Iu be the range of ρu.

Lemma 1 (Ikhouane, 2013). Let u ∈ W 1,∞(R+,Rn) be non-
constant so that Iu is not reduced to a single point. Then there ex-
ists a unique function ψu ∈ W 1,∞(Iu,Rn) that satisfies ψu ◦

ρu = u. The function ψu satisfies ∥ψ̇u∥∞,Iu = 1 and µ

ϱ ∈

Iu/ψ̇u(ϱ) is not defined or |ψ̇u(ϱ)| ≠ 1


= 0.

Lemma 2 (Ikhouane, 2013). Define sγ (t) = t/γ ,∀γ > 0, t ≥ 0.
Then ∀γ > 0, Iu◦sγ = Iu and ψu◦sγ = ψu.

2.2. Class of operators

Let Ξ be a set of initial conditions and consider the operator
H : W 1,∞(R+,Rn) × Ξ → L∞(R+,Rm). The operator H is
said to be causal if (Visintin, 1994, p. 60): ∀


u1, ξ

0

,

u2, ξ

0


∈

W 1,∞(R+,Rn)×Ξ , ∀τ > 0 if u1 = u2 on [0, τ ] then H

u1, ξ

0


=

H

u2, ξ

0

on [0, τ ].

Assumption 3 (Ikhouane, 2013). Let (u, ξ 0) ∈ W 1,∞(R+,Rn)×Ξ

and y = H

u, ξ 0


∈ L∞(R+,Rm); if ∃θ ∈ R+ such that u is

constant on [θ,∞), then y is constant on [θ,∞).

Lemma 4 (Ikhouane, 2013). Assume that H : W 1,∞(R+,Rn) ×

Ξ → L∞(R+,Rm) is causal and satisfies Assumption 3. Then, ∃!ϕu ∈

L∞(Iu,Rm) that satisfies ϕu ◦ ρu = y. Moreover ∥ϕu∥∞,Iu ≤ ∥y∥∞.
If y is continuous on R+, then ϕu is continuous on Iu and we have
∥ϕu∥∞,Iu = ∥y∥∞.

2.3. Definition of consistency and strong consistency

Definition 5 (Ikhouane, 2013). Let (u, ξ 0) ∈ W 1,∞(R+,Rn) × Ξ .
Consider an operator H : W 1,∞(R+,Rn) × Ξ → L∞(R+,Rm)
that is causal and that satisfies Assumption 3. The operator H is
said to be consistent with respect to (u, ξ 0) if the sequence of
functions {ϕu◦sγ }γ>0 converges in L∞(Iu,Rm) as γ → ∞. Denote
L∞(Iu,Rm) ∋ ϕ⋆u = limγ→∞ ϕu◦sγ .

Observe that, in Definition 5 of consistency, the input u needs
not be periodic. Now, to characterize the hysteresis loop of the
operator H we introduce the concept of strong consistency.

Definition 6 (Ikhouane, 2013). Let T > 0. A T -periodic function
w : R+ → R is said to be wave periodic if there exists some
T+

∈ (0, T ) such that

• The functionw is continuous on R+.
• The functionw is continuously differentiable on


0, T+


and on

T+, T

.

• The function w is increasing on

0, T+


and is decreasing on

T+, T

.

Lemma 7 (Ikhouane, 2013). If the input u ∈ W 1,∞(R+,Rn) is non-
constant and T-periodic, then Iu = R+ and ψu ∈ W 1,∞(R+,Rn) is
ρu (T )-periodic. Furthermore, if n = 1 and u is wave periodic, then a
more precise result can be stated. The functionψu is alsowave periodic
and ψ̇u (ϱ) = 1 for almost all ϱ ∈


0, ρu


T+


and ψ̇u (ϱ) = −1
for almost all ϱ ∈


ρu

T+

, ρu (T )


.

∀k ∈ N, let ϕ⋆u,k ∈ L∞ ([0, ρu (T )] ,Rm) be defined as ϕ⋆u,k (ϱ) =

ϕ⋆u (ρu (T ) k + ϱ) ,∀ϱ ∈ [0, ρu (T )].

Definition 8 (Ikhouane, 2013). Let (u, ξ 0) ∈ W 1,∞(R+,Rn) × Ξ .
Consider an operatorH : W 1,∞(R+,Rn)×Ξ → L∞(R+,Rm) that
is causal and that satisfies Assumption 3. The operator H is said to
be strongly consistent with respect to (u, ξ 0) if it is consistent with
respect to (u, ξ 0), and the sequence of functions ϕ⋆u,k converges
in L∞ ([0, ρu (T )] ,Rm) as k → ∞. Define L∞ ([0, ρu (T )] ,Rm) ∋

ϕ◦
u = limk→∞ ϕ

⋆
u,k.

If the operator H is strongly consistent with respect to (u, ξ 0),
then the graph


ψu (ϱ) , ϕ

◦
u (ϱ)


, ϱ ∈ [0, ρu (T )]


represents the

so-called hysteresis loop.

3. Problem statement

The LuGre model is given by Åström and Canudas-de-Wit
(2008):

ẋ (t) = −σ0
|u̇ (t)|
g (u̇ (t))

x (t)+ u̇ (t) , (1)

x(0) = x0, (2)
F (t) = σ0x (t)+ σ1ẋ (t)+ f (u̇ (t)) , (3)

where t ≥ 0 denotes time; the parameters σ0 > 0 and σ1 > 0
are respectively the stiffness and themicroscopic damping friction
coefficients; the function g ∈ C0 (R,R) represents the macro-
damping friction with g (ϑ) > 0,∀ϑ ∈ R; x(t) ∈ R is the av-
erage deflection of the bristles; x0 ∈ R is the initial state; u ∈

W 1,∞ (R+,R) is the relative displacement and is the input of the
system; F(t) is the friction force and is the output of the system;
and f ∈ C0 (R,R).

In Eq. (1), the function g(u̇) is measurable, thus, the differential
equation (1) can be seen as a linear time-varying system that
satisfies all assumptions of Filippov (1988, Theorem3). This implies
that a unique absolutely continuous solution of (1) exists on R+.

On the other hand, define Mu = supα∈[−∥u̇∥∞,∥u̇∥∞] g(α). Then
0 < Mu < ∞ since g is continuous and g (ϑ) > 0,∀ϑ ∈ R. We
also have 0 < g (u̇ (t)) ≤ Mu for almost all t ≥ 0. Thus it follows
from Åström and Canudas-de-Wit (2008) that |x(t)| ≤

Mu
σ0
,∀t ≥ 0

if |x0| ≤
Mu
σ0

. If |x0| > Mu
σ0

then |x(t)| ≤ |x0|,∀t ≥ 0. Thus, ∀x0 ∈ R
we have x ∈ W 1,∞ (R+,R).

Now, in Eqs. (1)–(3), consider the operatorH : W 1,∞(R+,R)×
R → L∞(R+,R) such that H(u, x0) = F . Then it can be shown
that H is causal and satisfies Assumption 3. This implies that the
concepts introduced in Section 2 apply.
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