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a b s t r a c t

This paper investigates the state feedback based output tracking control of Boolean control networks
(BCNs) with a constant reference signal by using the semi-tensor product method. Based on the algebraic
expression of BCNs and by constructing a series of reachable sets, a general procedure is proposed for the
design of the state feedback laws for BCNs to track a constant reference signal. The study of an illustrative
example shows that the obtained new results are effective in designing state feedback based output
tracking controllers for BCNs to track a constant reference signal.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since Kauffman’s pioneering work (Kauffman, 1969) in the
Boolean model of gene regulatory networks, the study of Boolean
networks has attracted great attention of biologists, physicists and
systems scientists. Consequently,many excellent results have been
established for Boolean networks (Akutsu, Hayashida, Ching, & Ng,
2007; Ay, Xu, & Kahveci, 2009; Chaves, 2009; Drossel, Mihaljev,
& Greil, 2005; Xiao, 2009; Xiao & Dougherty, 2007). In a Boolean
network, each gene can take two possible values, 1 and 0, and
its value (1 or 0) indicates its measured abundance (expressed or
unexpressed; high or low). From a graphical perspective, genes in
a Boolean network are nodes in this network and edges describe
regulatory relationships between genes.

As is well known, the ultimate goal ofmodeling gene regulatory
networks as Boolean networks is to design effective therapeutic in-
tervention strategies to influence the network dynamics to avoid
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undesirable cellular states. Hence, in order to manipulate Boolean
networks, binary control inputs and outputs are added to the net-
work dynamics, which yields Boolean control networks (BCNs).
The control of BCNs is a fundamental issue in both systems biol-
ogy and control theory. However, due to the lack of effective tools
to deal with logical dynamics, the control of BCNs has been a chal-
lenging problem for a long time until the introduction of the semi-
tensor product method (Cheng, Qi, & Li, 2011). The feature of this
method is that one can convert the dynamics of a Boolean (con-
trol) network into a linear (bilinear) discrete-time system. Then,
one can analyze Boolean (control) networks by using the classical
control theory. Up to now, there have beenmany interestingworks
on the control of BCNs via this novel method, which include con-
trollability and observability (Chen & Sun, 2014; Cheng, Li, & Qi,
2010; Cheng & Qi, 2009, 2010; Feng, Yao, & Cui, 2012; Fornasini
& Valcher, 2013a; Laschov & Margaliot, 2012; Li & Sun, 2011a,b;
Li & Wang, 2012; Zhang & Zhang, 2013; Zhao, Cheng, & Qi, 2010),
disturbance decoupling (Cheng, 2011; Yang, Li, & Chu, 2013), opti-
mal control (Fornasini & Valcher, 2014; Laschov &Margaliot, 2011;
Zhao, Li, & Cheng, 2011), stability and stabilization (Cheng, Qi, Li, &
Liu, 2011; Li & Wang, 2013; Li, Yang, & Chu, 2013), and other con-
trol problems (Cheng & Xu, 2013; Cheng & Zhao, 2011; Fornasini
& Valcher, 2013b; Li & Chu, 2012; Wang, Zhang, & Liu, 2012; Xu &
Hong, 2013; Zhang, 2012; Zhang & Feng, 2013; Zhao, Kim, & Filip-
pone, 2013; Zou & Zhu, 2014).

It is noted that in many practical gene regulatory networks, the
state variables cannot be measured directly due to the limitation
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of measurement conditions and the impact of immeasurable vari-
ables. In this case, one can use the measured outputs to track a
desirable reference signal which corresponds to some desirable
states. Thus, it is meaningful for us to design suitable controllers
(therapeutic intervention) that steer the output of BCNs to an ex-
pected reference signal, called the output tracking control problem
of BCNs in this paper. It should be pointed out that several types
of therapeutic intervention have been proposed for Boolean net-
works until now. Among them, the theory of automatic control,
such as the controllability and the optimal control, is an important
type of therapeutic intervention, and thereby many suitable con-
trol strategies have been obtained based on the classical control
theory (Akutsu et al., 2007; Choudhary, Datta, Bittner, &Dougherty,
2006). As one of the most important issues in the control theory,
it is believed that the output tracking control can provide an ef-
fective way for the design of therapeutic intervention. However, to
our best knowledge, there are no results available on the output
tracking control of BCNs.

In this paper, using the semi-tensor product method, we
investigate how to design output tracking controllers for BCNs to
track a constant reference signal. We propose a general procedure
to design state feedback based output tracking controllers for BCNs.
The key idea of this procedure is to stabilize the BCN to a set
of states whose outputs are the given constant reference signal.
Although this procedure is a generalization of the state feedback
stabilization control design method proposed in Fornasini and
Valcher (2013b) and Li et al. (2013), it has the following two
differences/novelties:
(1) The procedure proposed in this paper has wider applications

(such as the output tracking control, and the stabilization to a
stable region) because it can stabilize the BCN to a set of states.
When the set of states only contains an element, the proce-
dure degenerates to that of Fornasini and Valcher (2013b) and
Li et al. (2013).

(2) In our procedure, the set of states that is stabilized to is not
fixed, while the equilibrium in Fornasini and Valcher (2013b)
and Li et al. (2013) is fixed. How to determine a proper set of
states whose outputs are the given constant reference signal is
a very challenging problem in our procedure. In this paper, we
solve this problem by using the input-state incidence matrix
introduced in Zhao et al. (2010) (please see Theorem 2).

The rest of this paper is organized as follows. Section 2 formulates
the output tracking control problem studied in this work. Section 3
investigates the output tracking control of BCNs via state feedback
and presents themain results of this paper. An illustrative example
is given to support our new results in Section 4, which is followed
by a brief conclusion in Section 5.
Notation: The notation of this paper is fairly standard. D := {1, 0}.
∆n := {δk

n : k = 1, . . . , n}, where δk
n denotes the kth column

of the identity matrix In. For compactness, ∆ := ∆2. An n × t
matrix M is called a logical matrix, if M = [δ

i1
n δ

i2
n · · · δit

n ], and
we express M briefly as M = δn[i1 i2 · · · it ], and denote the set
of n × t logical matrices by Ln×t . Coli(A) denotes the ith column
of the matrix A, and Rowi(A) stands for the ith row of the matrix A.
0n :=


0 0 · · · 0  

n


. ‘‘¬’’, ‘‘∧’’ and ‘‘∨’’ denoteNegation, Conjunction

and Disjunction, respectively.

2. Problem formulation

Consider the following Boolean control network:
x1(t + 1) = f1(X(t),U(t)),
x2(t + 1) = f2(X(t),U(t)),
...

xn(t + 1) = fn(X(t),U(t));
yj(t) = hj(X(t)), j = 1, . . . , p,

(1)

where X(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Dn, U(t) =

(u1(t), . . . , um(t)) ∈ Dm and Y (t) = (y1(t), . . . , yp(t)) ∈ Dp

are the state, the control input and the output of the system (1),
respectively, and fi : Dm+n

→ D , i = 1, . . . , n and hj : Dn
→ D ,

j = 1, . . . , p are logical functions. Given a control sequence {U(t) :

t ∈ N}, denote the state trajectory of the system (1) starting from
an initial state X(0) ∈ Dn by X(t; X(0),U), and the output trajec-
tory of the system (1) starting from X(0) ∈ Dn by Y (t; X(0),U).

The output tracking control problem studied in this paper is to
design a state feedback control in the form of

u1(t) = k1(X(t)),
...
um(t) = km(X(t)),

(2)

such that the output of the closed-loop system consisting of the
system (1) and the control (2) tracks a given constant reference
signal Yr = (yr1, . . . , y

r
p) ∈ Dp, that is, there exists an integer

τ > 0 such that Y (t; X(0),U) = Yr holds for ∀ X(0) ∈ Dn and
∀ t ≥ τ , where ki : Dn

→ D , i = 1, . . . ,m are logical functions to
be determined.

In the following, we convert the system (1) and the state
feedback control (2) into equivalent algebraic forms, respectively.
To this end, we first recall the definition and some properties of the
semi-tensor product of matrices.

Definition 1 (Cheng et al., 2011). The semi-tensor product of two
matrices A ∈ Rm×n and B ∈ Rp×q is

A n B = (A ⊗ I α
n
)(B ⊗ I α

p
), (3)

where α = lcm(n, p) is the least common multiple of n and p, and
⊗ is the Kronecker product.

It is noted that when n = p, the semi-tensor product of A and B
becomes the conventional matrix product. Thus, the semi-tensor
product is a generalization of the conventional matrix product.
We can simply call it ‘‘product’’ and omit the symbol ‘‘n’’ if no
confusion arises in the following.

Proposition 1 (Cheng et al., 2011). The semi-tensor product of
matrices has the following properties:

(i) Let A ∈ Rm×n, B ∈ Rp×q and C ∈ Rr×s. Then (A n B) n C =

A n (B n C).
(ii) Let X ∈ Rt×1 be a column vector and A ∈ Rm×n. Then

X n A = (It ⊗ A) n X . (4)

By identifying 1 ∼ δ1
2 and 0 ∼ δ2

2 , we have ∆ ∼ D , where ‘‘∼’’
denotes two different expressions of the same thing. Inmost places
of this work, we use δ1

2 and δ2
2 to express logical variables and call

them the vector form of logical variables. The following lemma is
fundamental for the algebraic expression of logical functions.

Lemma 1 (Cheng et al., 2011). Let f (x1, x2, . . . , xs) : D s
→ D be a

logical function. Then, there exists a uniquematrix Mf ∈ L2×2s , called
the structural matrix of f , such that

f (x1, x2, . . . , xs) = Mf ns
i=1 xi, (5)

where xi ∈ ∆ and ns
i=1 xi = x1 n · · · n xs.

Using the vector form of logical variables and setting x(t) = nn
i=1

xi(t) ∈ ∆2n , u(t) = nm
i=1 ui(t) ∈ ∆2m and y(t) = np

i=1 yi(t) ∈ ∆2p ,
by Lemma 1, one can convert (1) and (2) into
x(t + 1) = Lu(t)x(t),
y(t) = Hx(t), (6)
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