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a b s t r a c t

This paper considers the problem of automatic fault diagnosis for transmission lines in large scale
power networks. Since faults in transmission lines threatens stability of the entire power network, fast
and reliable fault diagnosis is an important problem in transmission line protection. This work is the
first paper exploiting sparse signal recovery for the fault-diagnosis problem in power networks with
nonlinear swing-type dynamics. It presents a novel and scalable technique to detect, isolate and identify
transmission faults using a relatively small number of observations by exploiting the sparse nature of the
faults. Buses in power networks are typically described by second-order nonlinear swing equations. Based
on this description, the problem of fault diagnosis for transmission lines is formulated as a compressive
sensing or sparse signal recovery problem, which is then solved using a sparse Bayesian formulation. An
iterative reweighted ℓ1-minimisation algorithm based on the sparse Bayesian learning update is then
derived to solve the fault diagnosis problem efficiently. With the proposed framework, a real-time fault
monitoring scheme can be built using only measurements of phase angles at the buses.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Power networks are large-scale spatially distributed systems.
Being critical infrastructures, they possess strict safety and relia-
bility constraints. The design of monitoring schemes to diagnose
anomalies caused by unpredicted or sudden faults on power net-
works is thus of great importance (Shahidehpour, Tinney, & Fu,
2005). To be consistent with the international definition of the
fault diagnosis problem, the recommendations of the IFAC Techni-
cal Committee SAFEPROCESS is accordingly employed in what fol-
lows. Namely, this work proposes a method to: (1) decide whether
there is an occurrence of a fault and the time of this occurrence (i.e.
detection), (2) establish the location of the detected fault (i.e. isola-
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tion), and (3) determine the size and time-varying behaviour of the
detected fault (i.e. identification).

Since power networks are typically large-scale and have non-
linear dynamics, fault diagnosis over transmission lines can be a
very challenging problem. This paper draws inspiration from the
fields of signal processing and machine learning to combine com-
pressive sensing and variational Bayesian inference techniques so
as to offer an efficient method for fault diagnosis.

Most of the literature available on fault diagnosis focuses on
systems approximated by linear dynamics (Ding, 2008), with ap-
plications in networked system (Dong, Wang, & Gao, 2012), mod-
ern complex processes (Yin, Ding, Haghani, Hao, & Zhang, 2012),
etc. Beyond linear systems descriptions, the dynamics of buses in
power networks can be described by the so-called swing equations
where the active power flows are nonlinear functions of the phase
angles. Works that have considered fault detection and isolation
in power networks include (Mohajerin Esfahani, Vrakopoulou, An-
dersson, & Lygeros, 2012; Shames, Teixeira, Sandberg, & Johans-
son, 2011; Zhang, Zhang, Polycarpou, & Parisini, 2014). Shames
et al. (2011) focuses on distributed fault detection and isolation
using linearised swing dynamics and the faults are considered
to be additive. The method developed in Zhang et al. (2014) is
used to detect sensor faults assuming that such faults appear as
biased faults added to the measurement equation. In Mohajerin
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Esfahani et al. (2012), a fault detection and isolation residual gen-
erator is presented for nonlinear systems with additive faults. The
nonlinearities in Mohajerin Esfahani et al. (2012) are not imposed
a priori on the model structure but treated as disturbances with
some known patterns.

To summarise, theworks (Ding, 2008; Dong et al., 2012; Shames
et al., 2011; Yin et al., 2012) use linear systems to characterise
the dynamics of power networks and the faults are assumed to be
additive. Though the system dynamics are nonlinear in Mohajerin
Esfahani et al. (2012) and Zhang et al. (2014), the faults are still as-
sumed to be additive. Themethods developed on the basis of these
conservative assumptions yield several problems. Firstly, the lin-
ear approximation to nonlinear swing equations can only be used
when the phase angles are close to each other. However, when
the system is strained and faults appear, phase angles can often
be far apart. Therefore, a linear approximation is inappropriate in
strained power network situations. Secondly, it is well-known that
a large portion of power system faults occurring in transmission
lines do not involve additive faults, e.g. a short-circuit fault occur-
ring on the transmission lines between generators would corre-
spond to some changes in the parameters of the nonlinear terms
appearing in the swing equation (Kundur, Balu, & Lauby, 1994).
Furthermore, the inevitable and frequent introduction of newcom-
ponents in a power network contributes to the vulnerability of
transmission lines, which, if not appropriately controlled, can lead
to cascading failures (Hines, Balasubramaniam, & Sanchez, 2009;
Jiang, Yang, Lin, Liu, &Ma, 2000). Such cascading failures cannot be
captured by additive faults. Finally, the methods mentioned above
only address fault detection and isolation rather than identifica-
tion, which is crucial to take appropriate actions when faults occur
on transmission lines.
Contributions. The power networks considered in this paper are
described by the nonlinear swing equations with additive process
noise. The faults are assumed to occur on the transmission lines of
the power network. The problem of fault diagnosis, i.e. detection,
isolation and identification, of such nonlinear power networks is
formulated as a compressive sensing or sparse signal recovery
problem. To solve this problem we consider a sparse Bayesian for-
mulation of the fault identification problem, which is then casted
as a nonconvex optimisation problem. Finally, the problem is
relaxed into a convex problem and solved efficiently using an it-
erative reweighted ℓ1-minimisation algorithm. The resulting ef-
ficiency of the proposed method enables real-time detection of
faults in large-scale networks.
Outline. The outline of the paper is as follows. Section 2 introduces
the nonlinear model of power networks considered in this paper.
Section 3 formulates the fault diagnosis problem as a compressive
sensing or sparse signal recovery problem. Section 4 shows how
the resulting nonconvex optimisation problem can be relaxed into
a convex optimisation problem and solved efficiently using an
iterative reweighted ℓ1-minimisation algorithm. Section 5 applies
themethod to a power networkwith 20 buses and 80 transmission
lines and, finally, Section 6 concludes and discusses several future
problems.
Notation. The notation in this paper is standard. Bold symbols are
used to denote vectors andmatrices. For amatrix A ∈ RM×N ,Ai,j ∈

R denotes the element in the ith row and jth column, Ai,: ∈ R1×N

denotes its ith row, A:,j ∈ RM×1 denotes its jth column. For a col-
umn vector α ∈ RN×1, αi denotes its ith element. In particular, Il
denotes the identity matrix of size l× l. We simply use Iwhen the
dimension is obvious from context. ∥w∥1 and ∥w∥2 denote the ℓ1
and ℓ2 norms of the vector w, respectively. ∥w∥0 denotes the ℓ0
‘‘norm’’ of the vector w, which counts the number of nonzero ele-
ments in the vectorw. diag [γ1, . . . , γN ] denotes a diagonal matrix
with principal diagonal elements being γ1, . . . , γN . E(α) stands for
the expectation of stochastic variable α.

2. Model formulation

Power systems are examples of complex systems in which
generators and loads are dynamically interconnected. Hence, they
can be seen as networked systems, where each bus is a node in
the network. We assume that all the buses in the network are
connected to synchronous machines (motors or generators). The
nonlinear model for the active power flow in a transmission line
connected between bus i and bus j is given as follows. For i =
1, . . . , n, the behaviour of bus/node i can be represented by the
swing equation (Kundur et al., 1994; Shames et al., 2011; Zhang
et al., 2014)

miδ̈i(t)+ diδ̇i(t)− Pmi(t) = −

j∈Ni

Pij(t), (1)

where δi is the phase angle of bus i,mi and di are the inertia and
damping coefficients of the motors and generators, respectively,
Pmi is themechanical input power, Pij is the active power flow from
bus i to j, and Ni is the neighbourhood set of bus i where bus j and
i share a transmission line or communication link.

Considering that there are no power losses nor ground admit-
tances, and letting Vi = |Vi|ej̃δi be the complex voltage of bus i
where j̃ represents the imaginary unit, the active power flow be-
tween bus i and bus j, Pij, is given by:

Pij(t) = w
(1)
ij cos(δi(t)− δj(t))+ w

(2)
ij sin(δi(t)− δj(t)), (2)

wherew
(1)
ij = |Vi| |Vj|Gij andGij is the branch conductance between

bus i and bus j; and w
(2)
ij = |Vi| |Vj|Bij and Bij is the branch suscep-

tance between bus i and bus j.
If we let ξi(t) = δi(t) and ζi(t) = δ̇i(t), each bus can be assumed

to have double integrator dynamics. The dynamics of bus i can thus
be written:

ξ̇i(t) = ζi(t), (3)

ζ̇i(t) = ui(t)+ vi(t), (4)

where ξi, ζi are scalar states, vi(t) is a known scalar external input,
and ui is the power flow

vi(t) =
Pmi(t)
mi

(5)

ui(t) = −
di
mi

ζi(t)−
1
mi


j∈Ni

[w
(1)
ij cos(ξi(t)− ξj(t))

+w
(2)
ij sin(ξi(t)− ξj(t))]. (6)

The variables ξi and ζi can be interpreted as phase and frequency
in the context of power networks.

In Shames et al. (2011), the cos(·) terms are neglected (no
branch conductance between buses) and it is assumed that phase
angles are close to each other. The dynamics in (1) are then
linearised to yield

miδ̈i(t)+ diδ̇i(t)− Pmi(t) = −

j∈Ni

w
(2)
ij (δi(t)− δj(t)). (7)

Each bus i is assumed to have double integrator dynamics as
described in (3) and (4). ui(t) in (6) becomes a linear equation

ui(t) = −
di
mi

ξi(t)−
1
mi


j∈Ni

w
(2)
ij (ξi(t)− ξj(t)). (8)

For the linearised system (8), a bus k is faulty if for some functions
fξk(t) and fζk(t) not identical to zero either ξ̇i(t) = ζi(t) + fξk(t),
or ζ̇i(t) = ui(t)+ vi(t)+ fζk(t). The functions fξk(t) and fζk(t) are
referred to as fault signals. Model-based or observer-based fault
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