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ABSTRACT

The paper studies the reach control problem (RCP) to make trajectories of an affine system defined on a
polytopic state space reach and exit a prescribed facet of the polytope in finite time without first leav-
ing the polytope. We introduce the notion of a flow function, which provides the analog of a Lyapunov
function for the equilibrium stability problem. A flow function comprises a scalar function that decreases
along closed-loop trajectories, and its existence is a necessary and sufficient condition for closed-loop
trajectories to exit the polytope. It provides an analysis tool for determining if a specific instance of RCP is
solved, without the need for calculating the state trajectories of the closed-loop system. Results include
a variant of the LaSalle Principle tailored to RCP. An open problem is to identify suitable classes of flow
functions. We explore functions of the form V (x) = max{V;(x)}, and we give evidence that these func-
tions arise naturally when RCP is solved using continuous piecewise affine feedbacks. Next we introduce
the notion of a control flow function. It is shown that the Artstein-Sontag theorem of control Lyapunov

functions has direct analogies to RCP via control flow functions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We study the reach control problem (RCP) for affine systems on
polytopes. The problem is to find a feedback control to make the
closed-loop trajectories of an affine system defined on a polytopic
state space reach and exit a prespecified facet of the polytope in
finite time. The problem has ties to temporal logic specifications
(Girard, 2012; Kloetzer & Belta, 2008; Wongpiromsarn, Topcu, &
Murray, 2012), and arises in the study of piecewise affine (PWA)
hybrid systems consisting of a discrete automaton where each
discrete mode is equipped with continuous-time affine dynamics
defined on a polytope (Goebel, Sanfelice, & Teel, 2009). When
the continuous state crosses a facet of a polytope, the system is
transferred to a new discrete mode. The reachability problem for
piecewise affine hybrid systems at the continuous level reduces to
studying RCP for an affine system on a polytope (Habets, Collins, &
van Schuppen, 2006). Interesting applications of RCP can include
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motion of robots in complex environments (Belta, Isler, & Pappas,
2005), aircraft and underwater vehicles (Belta & Habets, 2006),
anesthesia (Ganness, 2010), genetic networks (Belta, Habets, &
Kumar, 2002), smart buildings, process control (Haugwitz &
Hagander, 2007), among others (Goebel, Sanfelice et al., 2009).
The preponderance of literature on RCP regards simplices be-
cause their remarkable structure allows to focus on the essence
of the reachability problem (Ashford & Broucke, 2013a,b; Broucke,
2010; Broucke & Ganness, 2014; Habets et al., 2006; Habets &
van Schuppen, 2004; Roszak & Broucke, 2006; Semsar Kazerooni &
Broucke, 2014). Moreover, the search for feedback classes to solve
RCP on simplices is narrowed due to their natural fit with affine
feedback (Habets & van Schuppen, 2004). In contrast with sim-
plices, the status for polytopes is more fragmentary. In Habets et al.
(2006) a method we call the simplex-based method was proposed.
In Helwa and Broucke (2011) and Helwa and Broucke (2013) the
geometric tools of Broucke (2010) were extended from simplices
to polytopes and a variant of RCP called the monotonic reach con-
trol problem (MRCP) was formulated. The simplex-based method
and MRCP are the only known synthesis methods for solving RCP
on polytopes (Helwa & Broucke, 2011). It is unlikely that the geo-
metric tools in Broucke and Ganness (2014) and Semsar Kazerooni
and Broucke (2014) can be extended to polytopes due to the in-
herent combinatorial complexity of polytopes. One then turns to
numerical approaches. Unfortunately, we encounter examples not
solvable by either the simplex-based method or MRCP, yet a PWA
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feedback is numerically obtained and simulations show it solves
RCP. This observation sets the stage for this paper.

We require an analysis tool that allows to diagnose rigorously if
a candidate PWA (or continuous state) feedback solves RCP, with-
out the need for calculating the state trajectories of the closed-loop
system. One immediately recognizes an analogy with Lyapunov
analysis for the equilibrium stability problem. But does RCP have
an inherent notion of a function that acts like a Lyapunov function?
Indeed it does. It was camouflaged as a flow condition in Roszak and
Broucke (2006). The flow condition is reinterpreted in this paper
as a linear scalar function V called a flow function that strictly de-
creases along closed-loop trajectories in the polytope #. Our con-
cept of flow functions appears to be related to so-called density
functions used to characterize certain reachability problems (Pra-
jna & Rantzer, 2007) as well as to barrier certificates (Sloth, Wis-
niewski, & Pappas, 2012).

The contributions of the paper are as follows. In Section 4 we
introduce the notion of a flow function. Flow functions provide
a necessary and sufficient condition that all trajectories initiated
in & leave it in finite time. In Section 5 we focus on PWA feed-
back, which is widely used to solve RCP on polytopes (Habets et al.,
2006; Helwa & Broucke, 2013). We present results which play
the role of converse Lyapunov theorems. The aim is to identify a
class of flow functions that naturally emerges when solving RCP
by PWA feedback. In Section 6 the analogy with Lyapunov theory
is deepened as we explore the Artstein-Sontag theorem for control
Lyapunov functions within the context of RCP. Control Lyapunov
functions continue to be intensively studied due to important
emerging applications in hybrid systems and robotics (Ames, Gal-
loway, & Grizzle, 2012; Goebel, Prieur, & Teel, 2009). We are lead
to the notion of control flow functions, and we propose a “universal
formula” for RCP. These results extend what is a verification tool
based on flow functions to a synthesis tool based on control flow
functions. A preliminary version of this paper appeared in Helwa
and Broucke (2012).

2. Background

We use the following notation. Let X C R" be a set. The closure
is X, the interior is X°, and the boundary is 0K = X \ X°,
where the notation X; \ K, denotes elements of the set X not
contained in the set K. The notation T (x) denotes the Bouligand
tangent cone to the set KX at a point x (Clarke, Ledyaev, Stern, &
Wolenski, 1998). For x € R", %;(x) denotes the open ball in R"
centered at x with radius §. For x, y € R", x - y denotes the inner
product of the two vectors. The notation 0 denotes the subset of
R" containing only the zero vector. The notation co{v, vy, ...}
denotes the convex hull of a set of points v; € R". The notation
R, denotes the set of non-negative real numbers. A function V :
R" — R is said to be of class #* if all its partial derivatives up to
order k exist and are continuous. The notation L;V (x) = %f (x)
denotes the Lie derivative of ¢! function V : R* — R with
respect to function f : R" — R™ Letf : R" — R" and
V : R" — R be locally Lipschitz functions, and let ¢ (t, Xo) denote
the unique solution of X = f(x) starting at xo. The upper right
Dini derivative of V (¢ (t, X)) with respect to t is DTV (¢ (t, x0)) =
lim sup, _, o L¢HTA0DV@EX0) The ypper Dini derivative of V

with respect to f is glven by Df V(x) := limsup,_ o+ M
We use some notions from algebraic topology (Munkr es 1996).

An n-dimensional simplex § := co{vp, ..., vy} is the convex hull
of (n + 1) affinely independent points {vo, ..., Uy} in R". A face of
4 is any simplex spanned by a subset of {vy, ..., v,}. A proper face
of & is any face of § different from 4 itself. A facet of 8 isan (n—1)-
dimensional face. The union of the proper faces of 4 is called the
boundary of 4, denoted d4. The interior of § is 8° = 4§ \ 04. An

n-dimensional polytope & = co{vy, ..., vp} is the convex hull of
p points {vy, ..., vp} in R" whose affine hull has dimension n. A tri-
angulation T of an n-dimensional polytope & is a finite collection
of n-dimensional simplices 4§, ..., 4, such that (i) # = Uf:1 8,
(ii)Foralli, j € {1, ..., L} withi # j, the intersection &§; N 4; is ei-
ther empty or acommon face of §; and ;. Let T be a triangulation of
&. A point x € P lies in the interior of precisely one simplex 4§, in
T whose vertices are, say, vy, ..., vy (note that 4§, is not necessar-
ily an n-dimensional simplex). Then x = Zﬁ;l Bivi, where 8; > 0
and Zi Bi = 1. Coefficients By, ..., Bi are called the barycentric
coordinates of x. If w is a vertex of T, the star of w in T, denoted by
st(w), is the union of the interiors of those simplices in T that have
w as a vertex. It is an open set in R". The closure of st(w), denoted
st(w), is called the closed star of w in T.

3. Reach control problem

Consider an n-dimensional polytopeinR", & := cof{vs, ..., vp}
with vertex set V. = {vy,...,v, | v; € R"} and facets
Fo, F1, ..., Fr. The exit facet is designated to be the facet F, of
&. Let h; be the unit normal to each facet #; pointing outside the
polytope. Define the index sets I := {1,...,p}, J := {1,...,1},
and J(x) := {j € J | x € F;}. For each x € &, define the closed,
convex cone €(x) := {y € R" | hj -y < 0, j € J(x)}. We consider
the affine control system defined on »

X=Ax+Bu-+a, x¢cP, (1)

where x € R" is the state, u € R™ is the control input, A €
R™" a e R", Be R™™, and rank(B) = m. Let 8 = ImB, the im-
age of B. Also, let ¢, (t, o) be the trajectory of (1) under a control
law u starting from xo € . We are interested in studying reacha-
bility of the exit facet #; from & by feedback control.

Problem 3.1 (Reach Control Problem (RCP)). Consider system (1)
defined on #. Find a state feedback u(x) such that: foreachxy € £
there exist T > 0 and y > O such that ¢,(t, xy) € & for all
t € [0, T], ¢u(T, x9) € Fo,and ¢, (t, xo) & P forallt € (T, T+y).

RCP says that trajectories of (1) starting from initial conditions in
reach and exit the facet % in finite time, while not first leaving »
Notice that the RCP definition assumes that the dynamics (1) can
be extended to a neighborhood of . A useful shorthand notation

is to write # N Fo by control u(x) if RCP is solved using u(x).

The class of continuous PWA feedbacks is widely used to solve
RCP on polytopes (Habets et al., 2006; Habets & van Schuppen,
2004; Helwa & Broucke, 2013). Let T be a triangulation of #. Given
a state feedback u(x) on £, we say u is a PWA feedback associated
with T if for any x € £, x = Y, Biv; implies u(x) = >, Biu(vy),
where {v;} are the vertices of &, and the §;’s are the corresponding
barycentric coordinates of x. If u(x) is a PWA feedback associated
with T, then for each n-dimensional simplex X € T, there exist
Ky € R™M"and g, € R™ such that u takes the form u(x) = Kix+ g,
x € 8% In the literature necessary conditions for a PWA feedback
to solve RCP have been identified; they guarantee that closed-loop
trajectories only exit & through %, (Habets & van Schuppen, 2004).
We say the invariance conditions are solvable if for eachx € &, there
exists u € R™ such that

Ax+ Bu+a e C(x). (2)

Solvability of (2) can be checked by solving a linear program at each
vertex of . Once control inputs satisfying (2) are obtained at the
vertices, one can apply a straightforward procedure presented in
Habets and van Schuppen (2004) to construct a continuous PWA
feedback on & satisfying (2) atallx € »
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