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a b s t r a c t

Although linear Model Predictive Control has gained increasing popularity for controlling dynamical
systems subject to constraints, the main barrier that prevents its widespread use in embedded
applications is the need to solve aQuadratic Program (QP) in real-time. This paper proposes a dual gradient
projection (DGP) algorithm specifically tailored for implementation on fixed-point hardware. A detailed
convergence rate analysis is presented in the presence of round-off errors due to fixed-point arithmetic.
Based on these results, concrete guidelines are provided for selecting the minimum number of fractional
and integer bits that guarantee convergence to a suboptimal solution within a pre-specified tolerance,
therefore reducing the cost and power consumption of the hardware device.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Model Predictive Control (MPC) technology is widely popular
in many industrial applications due to explicit performance opti-
mization, and its straightforward handling of constraints on inputs,
outputs and states (Bemporad, 2006;Mayne & Rawlings, 2009). An
MPC controller relies on solving a Quadratic Program to minimize
input efforts and the difference between predicted outputs and de-
sired set-points. The fact that a QP needs to be solved within each
sampling period has initially limited the diffusion ofMPC technolo-
gies to low-bandwidth applications where high computational re-
sources are available, as in the chemical and refinery industries.
However, in the last years an increasing interest in embeddedMPC
solutions is spreading inmany other industries, such as automotive
and aerospace.

EmbeddingMPC on a hardware platformposes quite a few chal-
lenges, both from a system-theoretic and an optimization point of
view. Specifically, the main requirements that make a QP solver
suitable for embedded MPC are the following: (a) the algorithm
should be simple enough to be implemented on simple hardware
platforms; (b) one must be able to compute a bound on its worst-
case execution time for computing a (reasonably good) solution;
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(c) stability and invariance guarantees for the resulting closed-loop
system must be provided despite suboptimality and/or infeasibil-
ity of the solution; (d) the algorithm should be robust to low preci-
sion arithmetic, i.e., the effect of round-off errors should be small,
no overflow should occur, and one should be able to determine a
priori the behavior of the algorithm under such hypotheses.

Ling et al. detailed in Ling, Yue, and Maciejowski (2006) an
FPGA implementation of an interior-point method for solving the
QP problem, showing that the ‘‘MPC-on-a-chip’’ idea is indeed
viable. Later, Knagge et al. proposed an active-set QP solver for
ASIC and FPGA (Knagge,Wills, Mills, & Ninness, 2009), and tested it
for MPC control of nonlinear systems. A ‘‘QP-on-a-chip’’ controller
implemented on FPGA with an iterative linear solver was tested in
hardware-in-the-loop experiments in Hartley et al. (2012).

All of the solvers proposed in such contributions require
floating-point numbers. However, when trying to minimize com-
putational effort, power consumption, and chip size, a great
positive impact is given by the choice of fixed-point number rep-
resentation (Kerrigan, Jerez, Longo, & Constantinides, 2012). Nev-
ertheless, this significant improvement in performance comes at
the price of a reduced range in which numbers can be represented
and round-off errors (Wilkinson, 1994). Because of this, algorithms
that perform well in floating-point may perform much worse
(even completely wrongly) in fixed-point. Therefore, additional
challenges arise when dealing with fixed-point arithmetic, mainly
studying round-off error accumulationduring algorithm iterations,
and establishing bounds on the magnitude of the computed vari-
ables to avoid overflows. In Jerez, Constantinides, and Kerrigan
(2012) an implementation of a modified interior-point solver in
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fixed-point is presented. The authors focus on the solution of the
linear system required in each algorithm iteration, and propose a
preconditioning technique tailored to prevent overflow errors as
well as a detailed analysis of the effects of the round-off error.

Recently, the use of first-order methods, and in particular fast
gradient methods developed by Nesterov (2004), has been ad-
vocated as a viable candidate for embedded optimization-based
control (Bemporad & Patrinos, 2012; Patrinos & Bemporad, 2012;
Richter, Jones, & Morari, 2009; Richter, Morari, & Jones, 2011).
Thesemethods can compute a suboptimal solution in a finite num-
ber of iterations,which can be bounded a priori, and they are simple
enough (usually requiring only matrix–vector products) for hard-
ware implementation. In particular, the accelerated DGP method
proposed in Bemporad and Patrinos (2012) and Patrinos and Bem-
porad (2012), called GPAD, can be applied to linear MPC problems
with general polyhedral constraints and with guaranteed global
primal convergence rates. In Rubagotti, Patrinos, and Bemporad
(2014) results of Patrinos and Bemporad (2012) are exploited to
show how GPAD can be used in MPC to provide invariance, stabil-
ity and performance guarantees in a finite number of iterations for
the closed-loop system.

1.1. Contribution

In this work, we propose a DGP method, which can be seen
as a simplified (non-accelerated) version of GPAD, specifically tai-
lored for fixed-point implementation. The main contribution of
this work is that we provide a detailed convergence rate and
asymptotic error analysis in terms of primal cost and primal fea-
sibility in the presence of round-off errors due to fixed-point arith-
metic, thus addressing successfully the last of the requirements
described previously for embedded optimization-based control. In
addition to that, we give specific guidelines on the number of frac-
tional bits that certify the convergence to a target suboptimal so-
lution, as well as on the number of integer bits to avoid overflow
errors. The machinery we use to perform the analysis is based
on the notion of the inexact oracle proposed by Devolder, Glineur,
and Nesterov (2013). However, directly applying the results of De-
volder et al. (2013) to our dual gradient projection method would
only provide us with convergence rate estimates about the quality
of the dual and not the primal iterates of the algorithm.

The reason for limiting the analysis to the non-accelerated
version of GPAD is that accelerated methods suffer from error
accumulation, as shown in Devolder et al. (2013). In Nedelcu and
Necoara (2012) andNedelcu, Necoara, and Dinh (2013) the authors
analyze the convergence rate of inexact gradient augmented
Lagrangian methods for constrained MPC, where the source of
inexactness comes from suboptimal solution of the so called inner
problem. In the present work, the source of inexactness comes
from round-off errors due to the fixed-point implementation.

1.2. Structure of the paper

After introducing some notation at the end of this section and
motivating thework in Section 2, in Section 3we give general theo-
retical results when a gradient projection (GP) algorithm runswith
an inexact oracle. In Section 4 an inexactDGPmethod is applied to a
modified version of the dual problemand its convergence ratewith
respect to primal suboptimality and infeasibility is analyzed. In
Section 5, the general results of the proposed inexact DGP method
are applied to the case of QP based on a fixed-point implemen-
tation. Simulation results and experiments on low-cost hardware
boards are presented in Section 6. Finally, conclusions are drawn
in Section 7.

The main technical contribution of this paper has appeared in
Patrinos, Guiggiani, and Bemporad (2013) without providing the
proofs of the theoretical results, that are providedhere in full detail.

The notation adopted throughout the paper is standard. Let
R, N, Rn, Rm×n denote the sets of real numbers, nonnegative
integers, column real vectors of length n, andm by n real matrices,
respectively. The transpose of a matrix A ∈ Rm×n is denoted by A′.
For any nonnegative integers k1 ≤ k2, the finite set {k1, . . . , k2}
is denoted by N[k1,k2]. For z ∈ Rn, ΠZ (z) denotes its Euclidean
projection on the set Z ⊆ Rn, while [z]+ denotes its Euclidean
projection on the nonnegative orthant, i.e., the vector whose ith
coordinate is max{zi, 0}. For a vector z ∈ Rn, ∥z∥ and ∥z∥∞

denote the Euclidean and infinity norm of z respectively, while if
A ∈ Rm×n, ∥A∥ denotes the spectral norm of A (unless otherwise
stated).

2. Motivation

When performing computations on low-cost, low-power em-
bedded devices, the adoption of a fixed-point number represen-
tation can have a great positive impact in terms of computational
speed. However, this comes at the price of a reduced precision and
a reduced range when compared to floating-point representation,
leading to the occurrence of round-off and overflow errors.

Suppose that an algorithm is running on a fixed-point hardware
with a scaling factor 2−p, where p ∈ N+ is the number of fractional
bits, and assume that real numbers are represented in fixed-
point by rounding to the closest value. Therefore, the resolution
(i.e., the smallest representable non-zero magnitude) of a fixed-
point number is equal to 2−(p+1).

It is obvious that addition and subtraction do not result in
any loss of accuracy due to rounding. However, multiplication can
suffer from rounding. In specific, multiplying two scalars ζ =

γ ξ leads to the fixed-point representation fi(ζ ) of ζ , with |ζ −

fi(ζ )| ≤ 2−(p+1).
For x, y ∈ Rn let fi(x′y) ,

n
i=1 fi(xiyi). Then the round-off

error for the inner product of x and y can be bounded as follows:

|x′y − fi(x′y)| ≤ 2−(p+1)n. (1)

If A is anm × nmatrix and x is an n-vector, then

∥Ax − fi(Ax)∥∞ ≤ 2−(p+1)n. (2)

Quadratic Programming algorithms based on Gradient Projec-
tion method require, at each iteration, the computation of the gra-
dient for the cost function. In a fixed-point architecture, instead of
the exact gradient ∇Φ(·), we have access to an approximate for-
mulation ∇̃Φ(·).

Convergence proofs have therefore to be reformulated in order
to take into account of this approximation. In addition to that, it is
of interest to find direct links between the fixed-point precision
and bounds on the gradient error, as well as solution quality.
Finally, bounds on the magnitude of all the variables are required
such that the number of integer bits can be chosen to avoid the
occurrence of overflow errors. All these topics will be covered in
the next sections.

3. Inexact gradient projection

Consider the problem

minimize Φ(y) (3)
subject to y ∈ Y ,

where Y is a nonempty closed convex subset of Rm, andΦ : Rm
→

R is convex, LΦ-smooth, i.e., there exists a LΦ > 0 such that

∥∇Φ(y) − ∇Φ(w)∥ ≤ LΦ∥y − w∥, y, w ∈ Rm.
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