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a b s t r a c t

This paper provides a new observer design methodology for invariant systems whose state evolves on
a Lie group with outputs in a collection of related homogeneous spaces and where the measurement of
system input is corrupted by an unknown constant bias. The key contribution of the paper is to study
the combined state and input bias estimation problem in the general setting of Lie groups, a question for
which only case studies of specific Lie groups are currently available. We show that any candidate ob-
server (with the same state space dimension as the observed system) results in non-autonomous error
dynamics, except in the trivial case where the Lie-group is Abelian. This precludes the application of the
standard non-linear observer design methodologies available in the literature and leads us to propose a
new design methodology based on employing invariant cost functions and general gain mappings. We
provide a rigorous and general stability analysis for the case where the underlying Lie group allows a
faithful matrix representation. We demonstrate our theory in the example of rigid body pose estimation
and show that the proposed approach unifies two competing pose observers published in prior literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of dynamical systems on Lie groups has been an
active research area for the past decade. Work in this area is mo-
tivated by applications in analytical mechanics, robotics and geo-
metric control for mechanical systems (Agrachev & Sachkov, 2004;
Bloch, 2003; Bullo, 2005; Jurdjevic, 1997). Many mechanical sys-
tems carry a natural symmetry or invariance structure expressed
as invariance properties of their dynamical models under trans-
formation by a symmetry group. For totally symmetric kinematic
systems, the system can be lifted to an invariant system on the
symmetry group (Mahony, Trumpf, & Hamel, 2013). In most prac-
tical situations, obtaining a reliable measurement of the internal
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states of such physical systems directly is not possible and it is nec-
essary to use a state observer.

Systematic observer design methodologies for invariant sys-
tems on Lie groups have been proposed that lead to strong stability
and robustness properties. Specifically, Bonnabel,Martin, and Rou-
chon (2008a,b, 2009) consider observers which consist of a copy
of the system and a correction term, along with a constructive
method to find suitable symmetry-preserving correction terms.
The construction utilizes the invariance of the systemand themov-
ing frame method, leading to local convergence properties of the
observers. The authors propose methods in Lageman, Trumpf, and
Mahony (2009, 2010, 2008) to achieve almost globally conver-
gent observers. A key aspect of the design approach proposed in
Lageman et al. (2009, 2010, 2008) is the use of the invariance prop-
erties of the system to ensure that the error dynamics are glob-
ally defined and are autonomous. This leads to a straight forward
stability analysis and excellent performance in practice. More re-
cent extensions to early work in this area was the consideration of
outputmeasurementswhere a partial statemeasurement is gener-
ated by an action of the Lie group on a homogeneous output space
(Bonnabel et al., 2008a,b, 2009; Khosravian, Trumpf, Mahony, &
Lageman, 2013; Lageman et al., 2009, 2008; Mahony et al., 2013).
Designmethodologies exploiting symmetries and invariance of the
system can be applied to many real world scenarios such as at-
titude estimator design on the Lie group SO(3) (Bonnabel et al.,
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2009; Brás, Cunha, Vasconcelos, Silvestre, & Oliveira, 2011; Grip,
Fossen, Johansen, & Saberi, 2012; Khosravian &Namvar, 2010;Ma-
hony, Hamel, & Pflimlin, 2008; Vasconcelos, Silvestre, & Oliveira,
2008), pose estimation on the Lie group SE(3) (Baldwin, Mahony,
Trumpf, Hamel, & Cheviron, 2007; Hua, Zamani, Trumpf, Mahony,
& Hamel, 2011; Rehbinder & Ghosh, 2003; Vasconcelos, Cunha, Sil-
vestre, & Oliveira, 2010), homography estimation on the Lie group
SL(3) (Hamel, Mahony, Trumpf, Morin, & Hua, 2011), and motion
estimation of chained systems on nilpotent Lie groups (Leonard &
Krishnaprasad, 1995) (e.g. front-wheel drive cars or kinematic cars
with k trailers).

All asymptotically stable observer designs for kinematic sys-
tems on Lie groups depend on a measurement of system input. In
practice, measurements of system input are often corrupted by an
unknown bias thatmust be estimated and compensated to achieve
good observer error performance. The specific cases of attitude es-
timation on SO(3) and pose estimation on SE(3) have been stud-
ied independently, and methods have been proposed for the con-
current estimation of state and input measurement bias (Mahony
et al., 2008; Vasconcelos et al., 2010, 2008). Thesemethods strongly
depend on particular properties of the specific Lie groups SO(3) or
SE(3) and do not directly generalize to general Lie groups. To the
authors’ knowledge, there is no existing work on combined state
and input bias estimation for general classes of invariant systems.

In this paper, we tackle the problem of observer design for gen-
eral invariant systems on Lie groups with homogeneous outputs
when the measurement of system input is corrupted by an un-
known constant bias. The observer is required to be implementable
based on available sensor measurements; the system input in the
Lie algebra, corrupted by an unknown bias, along with a collec-
tion of partial state measurements (i.e. outputs) that ensure ob-
servability of the state. For bias free input measurements, it is
always possible to obtain autonomous dynamics for the standard
error (Lageman et al., 2009, 2010, 2008), and previous observer
design methodologies for systems on Lie groups rely on the au-
tonomy of the resulting error dynamics. However, for concurrent
state and input measurement bias estimation, we show that any
implementable candidate observer (with the same state space di-
mension as the observed system) yields non-autonomous error dy-
namics unless the Lie group is Abelian (Theorem 4.1). This result
explains why the previous general observer design methodologies
for the bias-free case do not apply and why the special cases con-
sidered in prior works (Hua et al., 2011; Vasconcelos et al., 2010)
do not naturally lead to a general theory.

We go on to show that, despite the nonlinear and non-
autonomous nature of the error dynamics, there is a natural choice
of observer for which we can prove exponential stability of the
error dynamics (Theorems 5.1 and 5.2). The approach taken em-
ploys a general gain mapping applied to the differential of a cost
function rather than themore restrictive gradient-like innovations
used in prior work (Khosravian et al., 2013; Lageman et al., 2009,
2010, 2008). We also propose a systematic method for construc-
tion of invariant cost functions based on lifting costs defined on
the homogeneous output spaces (Proposition 6.1). To demonstrate
the generality of the proposed approach we consider the problem
of rigid body pose estimation using landmarkmeasurementswhen
the measurements of linear and angular velocity are corrupted by
constant unknown biases.We show that for specific choices of gain
mappings the resulting observer specializes to either the gradient-
like observer of Hua et al. (2011) or the non-gradient pose esti-
mator proposed in Vasconcelos et al. (2010), unifying these two
state-of-the-art application papers in a single framework that ap-
plies to any invariant kinematic system on a Lie-group. Stability of
estimation error is proved for the case where the Lie group allows
a faithful matrix representation.

The paper is organized as follows. After briefly clarifying our
notation in Section 2, we formulate the problem in Section 3. A

standard estimation error is defined and autonomy of the resulting
error dynamics is investigated in Section 4. We introduce the pro-
posed observer in Section 5 and investigate the stability of observer
error dynamics. Section 6 is devoted to the systematic construction
of invariant cost functions. A detailed example in Section 7 and
brief conclusions in Section 8 complete the paper. A preliminary
version of this work was presented at the CDC 2013 (Khosravian
et al., 2013).

2. Notations and definitions

Let G be a finite-dimensional real connected Lie group with
associated Lie algebra g. Denote the identity element of G by I . Left
(resp. right) multiplication of X ∈ G by S ∈ G is denoted by LSX =

SX (resp. RSX = XS). The Lie algebra g can be identified with the
tangent space at the identity element of the Lie group, i.e. g ∼= TIG.
For any u ∈ g, one can obtain a tangent vector at S ∈ G by left
(resp. right) translation of u denoted by S[u] := TILS[u] ∈ TSG
(resp. [u]S := TIRS[u] ∈ TSG). The element inside the brackets [·]

denotes the vector on which a linear mapping (here the tangent
map TILS : g → TSG or TIRS : g → TSG) acts. The adjoint map at
the point S ∈ G is denoted by AdS : g → g and is defined by
AdS[u] := S[u]S−1

= TSRS−1 [TILS[u]] = TSRS−1 ◦ TILS[u] where
◦ denotes the composition of two maps. For a finite-dimensional
vector space V , we denote its corresponding dual and bidual vector
spaces byV ∗ andV ∗∗ respectively. A linearmap F : V ∗

→ V is called
positive definite if v∗

[F [v∗
]] > 0 for all 0 ≠ v∗

∈ V ∗. The dual of F
is denoted by F∗: V ∗

→ V ∗∗ and is defined by F∗
[v∗

] = v∗
◦ F .

The linear map F is called symmetric (resp. anti-symmetric) if
v∗

[F [w∗
]] = w∗

[F [v∗
]] (resp. v∗

[F [w∗
]] = −w∗

[F [v∗
]]) for all

v∗, w∗
∈ V ∗, and it is called symmetric positive definite if it is

symmetric and positive definite. We can extend the above notion
of symmetry and positiveness to linear maps H:W → W ∗ as well.
Defining V := W ∗,H is called positive definite if H∗: V ∗

→ V
is positive definite and it is called symmetric if H∗ is symmetric.
Positive definite cost functions on manifolds are also used in the
paper and should not be mistaken with positive definite linear
maps.

3. Problem formulation

We consider a class of left invariant systems on G given by

Ẋ(t) = X(t)u(t), X(t0) = X0, (1)

where u ∈ g is the system input and X ∈ G is the state. Although
the ideas presented in this paper are based on the above left
invariant dynamics, they can easily be modified for right invariant
systems as was done for instance in Lageman et al. (2010). We
assume that u:R+

→ g is continuous and hence a unique solution
for (1) exists for all t ≥ t0 (Jurdjevic & Sussmann, 1972). In most
kinematic mechanical systems, u models the velocity of physical
objects. Hence, it is reasonable to assume that u is bounded and
continuous.

Let Mi, i = 1, . . . , n denote a collection of n homogeneous
spaces of G, termed output spaces. Denote the outputs of system (1)
by yi ∈ Mi. Suppose each output provides a partial measurement
of X via

yi = hi(X, ẙi) (2)

where ẙi ∈ Mi is the constant (with respect to time) reference
output associated with yi and hi is a right action of G on Mi,
i.e. hi(I, yi) = yi and hi(XS, yi) = hi(S, hi(X, yi)) for all yi ∈

Mi and all X, S ∈ G. To simplify the notation, we define the
combined output y := (y1, . . . , yn), the combined reference
output ẙ := (ẙ1, . . . , ẙn), and the combined right action h(X, ẙ) :=
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