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a b s t r a c t

This paper presents a fundamental design trade-off applicable to a class of linear positive systems. The
result connects the maximum and minimum output response peaks due to a disturbance for all feasible
inputs. A core consequence of the result is that, when the disturbance pulse response peaks faster than
the input pulse response, then attempts to minimise the maximum peak response to the disturbance are
necessarily accompanied by unavoidable undershoot at a later time. The result has potential application
in many areas. For example, it provides a defensible benchmark for comparison of all possible insulin
treatment strategies for Type 1 diabetes patients. This includes any control strategy implemented in the
context of an Artificial Pancreas (AP). The lack of such a benchmark has been a deficiency in the existing
AP literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Positive systems are systems where all state variables remain
non-negative at all times (Berman, Neumann, & Stern, 1989; Kras-
nosel’skij, Lifshits, & Sobolev, 1989). Many real world problems in
engineering, economics and biology can be modelled as positive
systems (Farina & Rinaldi, 2011; Kaczorek, 2002).

In the current paper we present an unavoidable trade-off in the
control system design for a class of positive systems. The result
presented here falls under the broad classification of fundamental
control limitations (Doyle & Stein, 1981; Goodwin, Graebe, & Sal-
gado, 2001; Horowitz, 1963; Seron, Braslavsky, & Goodwin, 1997).
This topic has been a cornerstone problem in modern control the-
ory. Known results include the much celebrated Bode Sensitivity
integral trade-off (Bode, 1945). Results are available for both lin-
ear and nonlinear systems and include both time and frequency
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domain behaviour (Chen, 1995; Freudenberg, Hollot, Middleton, &
Toochinda, 2003; Freudenberg & Looze, 1985; Middleton, 1991).
However, to the best of the authors’ knowledge, there has been no
previous trade-off enunciated for positive systems.

An illustration of the implications and usefulness of the result
developed here is given in the context of blood glucose regulation
for Type 1 diabetes patients. Type 1 diabetes is a major health is-
sue. Almost 1% of people in the western world suffer from this
disease. Treatment is invasive and disruptive to the patient. It is
a quintessential example of positive systems since all variables,
e.g. blood glucose and insulin concentration, are restricted to take
positive values.

Because of its impact, much has been written on the topic of
blood glucose regulation. Indeed, there has been a major effort
directed at the development of an artificial pancreas aimed at
automating the control of blood glucose level (Bequette, 2005;Har-
vey, Wang, & Grosman, 2010; Klonoff, Cobelli, Kovatchev, & Zisser,
2009; Lee, Buckingham, Wilson, & Bequette, 2009). Although huge
advances have been made, it is generally agreed that a fully auto-
mated system remains some distance away. The result presented
in the current paper is believed to provide important insights into
the development of an Artificial Pancreas and, more broadly, for
the treatment of Type 1 diabetes patients.

The layout of the remaining part of the paper is as follows: in
Section 2 we summarise relevant system theory and describe the
model. Section 3 develops the main result of the paper. Section 4
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briefly discusses the implications of the result in the treatment of
Type 1 diabetes. Conclusions are drawn in Section 5.

2. System theory background

We consider a linear dynamic single-input single-output time-
invariant system acted upon by an external disturbance. The sys-
tem is assumed to belong to the class of positive systems in which
all variables are positive for all time.

We assume that the system operates around some steady state
value (ȳs, ūs) of the output and input, respectively.We also assume
the existence of a positive endogenous input Ēs.

The incremental output response to a unit disturbance input is
modelled by the pulse response hd

t . Similarly, the incremental out-
put response to a unit input pulse is modelled by hu

t . For simplicity,
we assume that hd

t and hu
t are both zero for all t ≥ N .

Then, via the principle of superposition, the response at time t
due to a disturbance sequence {dj; j = 0, 1, . . .} and to an input
sequence {uj; j = 0, 1, . . .} is

yt = Ēs −

N
i=1

hu
i ut−i +

N
i=1

hd
i dt−i. (1)

In circumstances where no disturbances occur and the input is
set to ūs, then

ȳs = Ēs − ūs

N
i=1

hu
i . (2)

Remark 1. In this paper we will not focus on how a model of the
form of (1) can be obtained experimentally. Indeed, the result pre-
sented here depends only upon the existence of the model and not
on knowledge of the model. Of course, a practical implementation
of the gold standard presented in the sequel would require an es-
timate of the model. In this context, a sensitivity analysis to model
estimation errors lies outside the scope of the paper.

3. A fundamental trade-off

To create a fundamental trade-off, we consider a disturbance
pulse of intensity D̄ applied at t = 0 and determine bounds on the
subsequent overshoot, i.e. a transition over the setpoint, and un-
dershoot, i.e. a transition below the setpoint, in the response for all
possible causal control strategies.

Let us assume that some control scenario leads to the input se-
quence ut−N , . . . , u0, u1, . . . , ut−1. Then, from (1), the correspond-
ing output response at time t is given by

yt = Ēs + D̄hd
t −

N
j=1

hu
j ut−j, t ≥ 1. (3)

We focus our attention on two specific time samples, namely
T1 and T2 > T1, which are arbitrarily chosen and are illustrated
schematically in Fig. 1. Note that M1, M2 are the values of the
disturbance response, hd

t , at times t = T1 and t = T2.
In the sequel, it will be helpful to work with input increments

around the steady input ūs. Thus, we introduce
ũj = uj − ūs (4)
where, due to causality of the strategy, ũj = 0 for j < 0. We can
then rewrite (3) as

yt = Ēs + D̄hd
t −

N
j=1

hu
j [ut−j − ūs + ūs]

=


Ēs −

N
j=1

hu
j ūs


+ D̄hd

t −

N
j=1

hu
j ũt−j

= ȳs + D̄hd
t −

N
j=1

hu
j ũt−j (5)

Fig. 1. Input and disturbance pulse responses.

where we have used (2). We also constrain the input to be positive
and hence

ũj ≥ −ūs. (6)

With the above as background, we have the fundamental law pre-
sented in Theorem2. The result holds under general conditions, but
has particular significance when the disturbance pulse response
peaks faster than the input pulse response. In the latter case, the
result shows that all attempts to diminish the effect of a distur-
bance in the output at an early time, necessarily lead to undershoot
at a later time. In addition, we derive an upper bound on the low-
est excursion and show that the bound is achievable by a particular
control strategy involving a single input pulse.

Theorem 2. Let a disturbance pulse of intensity D̄ be applied at t = 0.
Let yT1 , yT2 be the output response at t = T1 and at t = T2,
respectively, then the following statements hold:

(a) Consider a fixed value of yT1 , then ȳT2 is an upper bound on yT2 ,
i.e. yT2 ≤ ȳT2 and is given by

ȳT2 = C1 + C2D̄ + r∗yT1 (7)

where

C1 = ȳs + D3 − r∗ȳs + D2 − r∗D1 (8)

C2 = M2 − r∗M1 (9)

and where ȳs is the steady state value of yt when ūs is applied (see
(2)). Additionally,

r∗
= min

k∈[0,T1]


hu
T2−k

hu
T1−k


(10)

D1 =

T1−1
j=1

hu
T1−jūs (11)

D2 =

T1−1
j=1

hu
T2−jūs (12)

D3 =

T2
j=T1

hu
T2−jūs (13)

andM1, M2 are the values of the disturbance pulse response, hd
t , at

times t = T1 and t = T2, respectively, in the absence of additional
input signals (see Fig. 1) and where 1 < T1 < T2.
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