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a b s t r a c t

This paper deals with the enforcement of nonlinear constraints on Petri nets. A supervisory structure is
proposed for a class of nonlinear constraints. In order to enforce a nonlinear constraint on a Petri net, we
propose a transition transformation technique to replace a transition in an original net by a set of tran-
sitions. Then, a control place is designed to control the firing of these transitions, aiming to enforce the
nonlinear constraint. The proposed supervisor is maximally permissive in the sense that it can make all
markings in the admissible-zone reachable and all markings in the forbidden-zone unreachable. The pro-
posed method is applicable to bounded Petri nets. Finally, a number of examples are provided to demon-
strate the proposed approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Petri nets (Murata, 1989) are a powerful tool to model and ana-
lyze discrete event systems (DESs). They have beenwidely used for
deadlock control, scheduling and planning, and performance eval-
uation in a variety of resource allocation systems (Barkaoui & Ab-
dallah, 1995; Li, Liu, Hanisch, & Zhou, 2012; Li, Wu, & Zhou, 2012;
Zhang et al., 2015). Supervisory control is a suitable mechanism
to enforce external constraints on a system to be controlled. In
the framework of Petri nets, a supervisor that enforces supervisory
control specifications is often represented by a set of control places.

Constraints associated with reachable states in a DES are a
typical and important control specification in supervisory control
theory of DESs. Many specifications can be converted into linear
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constraints. For example, deadlock problems in Petri nets are
usually dealt with by finding a set of constraints, with respect to
the markings, that can prevent the system from reaching deadlock
states (Barkaoui, Couvreur, & Klai, 2005; Chen & Li, 2013; Li &
Zhao, 2008; Li & Zhou, 2009). Most control requirements in system
control design can be directly represented by a set of constraints.

Generally, there are two classes of constraints in Petri nets: lin-
ear and nonlinear. Linear constraints, also called generalized mu-
tual exclusion constraints (GMECs) (Giua, DiCesare, & Silva, 1992;
Ma, Li, & Giua, in press), play an important role in the develop-
ment of supervisors for a system modeled by Petri nets. Many ef-
forts have been done to enforce a GMEC by constructing a place
invariant (PI) (Banaszak & Krogh, 1990; Chen, Li, & Zhou, 2012;
Yamalidou, Moody, Lemmon, & Antsaklis, 1996). The PI-based ap-
proach is well-established and widely used by researchers and
engineers. Yamalidou et al. (1996) study a variety of GMECs and
design control places to enforce them by constructing PIs. Iordache
and Antsaklis (2005, 2007) present an approach to the implemen-
tation of disjunctive GMECs. The work in Iordache and Antsaklis
(2006) provides a good survey on the design of control places by
PI based methods. Up to now, a lot of work has been done to deal
with deadlocks by Petri nets (Chen, Li, & Barkaoui, 2014; Ghaffari,
Rezg, & Xie, 2003; Huang, Jeng, Xie, & Chung, 2006; Li & Zhou, 2004,
2006, 2008; Liu, Li, & Zhou, 2010; Wu, Zhou, & Li, 2008). In fact, al-
most all of them compute control places by PIs (Chen, Li, & Zhou,
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2014). Another line to deal with deadlocks in DESs is based on fi-
nite state automata, as shown in Nazeem and Reveliotis (2012),
Nazeem, Reveliotis,Wang, and Lafortune (2011) and Reveliotis and
Nazeem (2013). In this work, we focus on the enforcement of non-
linear constraints on Petri nets.

Uzam and Zhou (2006, 2007) provide an iterative method to
design liveness-enforcing supervisors of Petri nets. They divide
the reachability graph of a Petri net model into two parts: a live-
zone (LZ) and a deadlock-zone (DZ), where the LZ contains all legal
markings and the DZ includes all the illegal markings from which
no legal marking is reachable. First, they compute the set of first-
met badmarkings (FBMs) of a netmodel. An FBM is an illegalmark-
ing that represents the very first entry from the LZ to the DZ. At
each iteration, an FBM is singled out and a control place is com-
puted to forbid it. The process cannot terminate until all FBMs are
forbidden. Then, the controlled net is live since it cannot enter the
DZ anymore. The method is intuitive but cannot lead to an optimal
supervisor in general. In our previous work (Chen, Li, Khalgui, &
Mosbahi, 2011), we improve Uzam and Zhou’s results by propos-
ing amethod to obtain amaximally permissive supervisor. In Chen
and Li (2011, 2012), the control places are computed by solving
an integer linear programming problem (ILPP) that makes all le-
gal markings reachable but all FBMs unreachable. Meanwhile, the
objective function can minimize the number of the control places.

However, not all specifications can be represented as GMECs. In
some cases, the specifications require to enforce a nonlinear con-
straint on a net model. For GMECs, the control places can be de-
signed by constructing PIs. However, to the best of our knowledge,
no work is reported to compute a supervisor by following the clue
of handling GMECs if the constraints are nonlinear since we can-
not directly construct PIs for the nonlinear constraints. This work
focuses on the enforcement of nonlinear constraints. A supervisory
structure is developed. It splits a transition in an original netmodel
into a set of transitions. The proposed supervisor can also make all
markings in the admissible-zone reachable and all markings in the
forbidden-zone unreachable. The proposed approach is applicable
to bounded Petri net models.

The rest of the paper is organized as follows. In Section 2, some
basics of Petri nets are recalled. Section 3 reports the concepts and
properties of nonlinear constraints. Section 4 provides a supervi-
sory structure to implement a nonlinear constraint. Meanwhile, a
number of examples are provided to illustrate the performance of
the supervisory structure. Finally, conclusions are reached in Sec-
tion 5.

2. Preliminaries

This section recalls the basics of Petri nets (Murata, 1989) and
generalized mutual exclusion constraints (GMECs) (Giua et al.,
1992).

2.1. Petri nets

A Petri net is a four-tuple N = (P, T , F ,W ) where P and T
are finite and non-empty sets. P is a set of places and T is a set of
transitionswith P∩T = ∅. F ⊆ (P×T )∪(T×P) is a flow relation of
the net, represented by arcs with arrows from places to transitions
or from transitions to places. W : (P × T ) ∪ (T × P) → N is a
mapping that assigns a weight to an arc: W (x, y) > 0 if (x, y) ∈ F ,
andW (x, y) = 0, otherwise, where (x, y) ∈ (P × T ) ∪ (T × P) and
N is the set of non-negative integers. •x = {y ∈ P ∪ T | (y, x) ∈ F}

is called the preset of x and x•
= {y ∈ P ∪ T | (x, y) ∈ F} is

called the postset of x. A marking is a mapping M : P → N. M(p)
denotes the number of tokens in place p. The pair (N,M0) is called
a marked Petri net or a net system. A net is pure (self-loop free) if
∀(x, y) ∈ (P × T )∪ (T × P),W (x, y) > 0 impliesW (y, x) = 0. The
incidence matrix [N] of a net N is a |P| × |T | integer matrix with
[N](p, t) = W (t, p) − W (p, t).

A transition t ∈ T is enabled at marking M if ∀p ∈
•t ,

M(p) ≥ W (p, t). This fact is denoted as M[t⟩. Once an enabled
transition t fires, it yields a new marking M ′, denoted as M[t⟩M ′,
where M ′(p) = M(p) − W (p, t) + W (t, p). The set of reachable
markings of net N with initial markingM0 is denoted by R(N,M0).
It can be graphically expressed by a reachability graph, denoted
as G(N,M0). It is a directed graph whose nodes are markings in
R(N,M0) and arcs are labeled by the fired transitions.

Let (N,M0) be a net systemwith N = (P, T , F ,W ). A transition
t ∈ T is live if ∀M ∈ R(N,M0), ∃M ′

∈ R(N,M), M ′
[t⟩. (N,M0) is

live if ∀t ∈ T , t is live. It is dead if @t ∈ T , M0[t⟩.

2.2. Generalized mutual exclusion constraint

A GMEC (Giua et al., 1992) is a control requirement that limits a
weighted sum of tokens contained in a subset of places. Let [N] be
the incidence matrix of a plant with n places and m transitions. A
GMEC can be expressed as:

n
i=1

wi · µi ≤ k (1)

whereµi denotes the number of tokens in place pi at any reachable
marking, and wi and k are non-negative integers. Eq. (1) can be
represented as a vector form, i.e.,

w⃗T
· µ⃗ ≤ k (2)

where w⃗ is aweight vector of nonnegative integerswith w⃗(i) = wi,
µ⃗ is a vector of nonnegative integers with µ⃗(i) = µi and k is a
positive integer. A GMEC is usually denoted as (w⃗, k).

By introducing a non-negative slack variableµs, Eq. (2) becomes

w⃗T
· µ⃗ + µs = k (3)

where µs represents the marking of control place ps, generally
called a monitor. The firing of a transition t modifies the tokens
in ps by a constant:

∆(t) = −w⃗T
· [N](•, t). (4)

In fact, ∀M1,M2 ∈ R(N,M0) with M1 = M2 + [N](•, t), we have
∆(t) = M1(ps) − M2(ps). Thus, the incidence vector [Ns] of ps can
be computed by:

[Ns] = −w⃗T
· [N]. (5)

The initial markingM0(ps) of ps can be calculated as follows:

M0(ps) = k − w⃗T
· M0. (6)

3. Generalizations of arbitrary marking constraints

In this section, we present basic concepts of nonlinear con-
straints in Petri nets in the sense of reachability graph analysis.
A constraint for a Petri net is in general a predicate with respect
to the states (markings) of the Petri net. Let c be a constraint that
restricts the tokens contained in a subset of places of a Petri net
model (N,M0). In this work, the constraints are only associated
withmarkingswhile no firing vectors of transitions are considered.

Definition 1. Let c be a constraint andM ∈ R(N,M0) a marking of
a net (N,M0). The function F(c,M) is defined as F(c,M) = 1 if M
satisfies c and F(c,M) = 0 otherwise.

Given a constraint c , the reachable markings of a net are classi-
fied into two groups: admissible ones that satisfy c and inadmissi-
ble ones that do not satisfy c , as defined below:

Definition 2. Let c be a constraint of a Petri net model (N,M0). A
markingM ∈ R(N,M0) is said to be admissible with respect to c if
F(c,M) = 1. The set of admissible markings of c is denoted by Mc .
A reachable marking M of (N,M0) is said to be inadmissible with
respect to c if F(c,M) = 0. The set of inadmissible markings of c is
denoted by Mc .
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