
A reduction type penalty algorithm for
nonlinear semi-infinite programming ?

Alzira Mota ∗ A. Ismael F. Vaz ∗∗

∗ Institute Polytechnic of Porto, Mathematic Department, Engineering
Institute, Porto, Portugal (e-mail:atm@isep.ipp.pt).

∗∗University of Minho, Engineering School, Production and Systems
Department, Portugal (e-mail:aivaz@dps.uminho.pt).

Abstract: Semi-infinite programming (SIP) problems arise in several engineering areas such
as, for example, robotic trajectory planning, production planning, digital filter design and air
pollution control. In spite of being an active research area with many seminal works it lacks
available software that could be used by the research community. The only exceptions are the
fseminf MATLAB function, available in the Optimization Toolbox, and the NSIPS solver, but
neither of them provide an implementation of a method belonging to the well known reduction
type class.
This paper proposes an implementation of a reduction type algorithm base on a penalty
technique and provides a compare between several well known penalty functions.
The provided numerical results with a significant number of SIP test problems are reported as
performance profiles.

Keywords: Semi-infinite programming, Reduction type algorithm, Particle swarm
optimization, Penalty functions

1. INTRODUCTION

Semi-infinite programming (SIP) problems arise in many
engineering areas such as robotic trajectory planning,
production planning, Chebyshev approximation theory
and air pollution control (see, for example, Goberna and
López (2001); Hettich and Kortanek (1993); Reemtsen and
Rückmann (1998) and the references therein).

While algorithms for solving SIP problems are reported in
the SIP literature during the last decades (e.g. Goberna
and López, 2001; Hettich and Kortanek, 1993; Reemtsen
and Rückmann, 1998; Polak, 1997; Fiacco and Kortanek,
1983; Hettich, 1979) there is not much software available.
The MATLAB (MATLAB, 2004) fseminf function is
available in the Optimization Toolbox. The NSIPS (Vaz
et al., 2002) solver is a public domain software dedicated
to SIP. The FSQP 1 (Lawrence and Tits, 1998) is also
reported to be useful for SIP.

We introduce now some notation and definitions used
throughout the paper. The SIP problem can be described
in the following form:

min
x∈Rn

f(x)

s.t. gi(x, t) ≤ 0, i = 1, . . . ,m
∀t ∈ T ⊂ Rp,

(1)

where f(x) is the objective function, gi(x, t), i = 1, . . . ,m,
are the (infinite) constraint functions and T is an infinite
set. f and gi are assumed to be at least twice continuously

? Support was provided by FCT under grant
POCI/MAT/58957/2004, and by the Algoritmi research center
1 www.aemdesign.com

differentiable in all arguments. The SIP formulation could
be more general, by including equality and inequality
constraints depending only on the x variables. The set
T could also depend on the x variables resulting in a
generalized SIP problem, but the given definition just suits
our purpose.

A natural way to solve the SIP problem (1) is to replace
the infinite set T by a finite one. There are several ways
to do this. Discretization, exchange and reduction type
methods (see Hettich and Kortanek (1993), for a more
detailed explanation) are the major classes.

Reduction type methods are characterized by the need to
compute the global solutions of the auxiliary problems

max
t∈T

gi(x̄, t) (2)

for each i = 1, . . . ,m and a given x̄.

The extra burden to compute all the global solution
to problem (2) is compensated by the good theoretical
properties enjoyed by the reduction type methods.

Discretization methods are implemented in the MATLAB
toolbox and in the NSIPS solvers.

In the next section we introduce the reader to penalty
techniques in the context of reduction type methods for
SIP. In Section 3 we describe the implemented penalty
technique algorithm. Numerical results are presented in
Section 4 and we conclude the paper in Section 5.

2. PENALTY APPROACH

In a penalty technique a constrained optimization problem
is transformed into a sequence of unconstrained optimiza-



tion subproblems. This transformation is done by defining
an auxiliary function (penalty function φ) depending on
the objective or Lagrangian function and on the problem
constraints. The unconstrained optimization subproblems
are controlled by one or more parameters (penalty pa-
rameters) that determine the relative importance of the
constraints in the unconstrained subproblems.
Note 1. A penalty function φ(x, µ) is called exact when
there exists a finite µ∗, such that a local minimizer of
φ(x, µ), x∗(µ), is a solution of (1), x∗, for µ > µ∗.

Penalty functions for semi-infinite programming have been
proposed during the last decades (see, for example, Conn
and Gould (1987); Price (1992); Price and Coope (1990,
1996); Watson (1981)).

In this paper we are reporting results for the L1, L2,
L∞ and LP penalty functions. The first three penalty
functions considered are based on the 1, 2 and ∞ norms
of the constraints, respectively. The LP penalty function
was proposed in Price and Coope (1996) and combines two
terms based on the ∞ norm of the constraints.

The L1 penalty function considered for problem (1) is
formulated as

φ1(x, µ) = f(x) + µθ1(x) (3)
where

θ1(x) =
m∑
i=1

(
max
t∈T

[gi(x, t)]+

)
,

µ is a positive penalty parameter and for z ∈ R, [z]+ =
max{0, z}. The major drawback with this penalty function
is its non-differentiability due to the use of the []+ function.

The L2 penalty function is defined as
φ2(x, µ) = f(x) + µθ2(x) (4)

where

θ2(x) =
m∑
i=1

(
max
t∈T

[gi(x, t)]
2
+

)
.

This penalty function is known not to be exact (and
therefore a solution to problem (1) is only obtained when
µ → ∞, resulting in ill conditioned subproblems to be
solved). In spite of this drawback the φ2 penalty function
has the advantage of being once continuously differentiable
(recall that f and gi, i = 1, . . . ,m, are assumed twice
continuous differentiable).

The L∞ penalty function uses the `∞ norm of the con-
straints and is described as

φ∞(x, µ) = f(x) + µθ∞(x) (5)
where

θ∞(x) = max
i∈{1,...,m}

(
max
t∈T

[gi(x, t)]+

)
.

The penalty function proposed by Price and Coope (1996);
Price (1992) uses an augmented L∞ penalty function. The
augmented penalty function uses two penalty parameters
to control feasibility and is defined as follows:

φP (x, µ, ν) = f(x) + µθ∞(x) +
1
2
νθ2∞(x), (6)

where µ > 0 and ν ≥ 0 are the penalty parameters.
The second term was added in order to prevent µ to be
set extremely large. Under mild assumptions it can be

shown that an optimal to problem (1) is a critical point of
φP (x, µ, ν) and conversely (see Price (1992) for details).

The penalty function L∞ is exact (in a similar way as
defined in Note 1).

When a penalty function is known to be exact µ∗ (and ν∗)
is (are) not known in advance so a unique minimization of
the penalty function is not possible. Often µ∗ (and/or ν∗)
is (are) related with the Lagrange multipliers of the active
constraints at the solution of the constrained (original)
problem.

For a practical purpose the µ (and ν) parameter(s) is
(are) updated along the iterations as new estimations for
the Lagrange multipliers becomes available, or simply by
increasing the penalty parameters if the current iterate
shows to be unfeasible for the constrained problem (1).

Updating schemes for the penalty parameters and the
penalty framework are described in the next section.

3. THE PENALTY FRAMEWORK

In this section we describe the used penalty framework.

The penalty framework comprises two main phases (or
iterations type). The first phase, called external iterations,
is described in subsection 3.1 and is related with solving a
sequence of penalty functions parameterized by µ (for the
penalty functions L1, L2 and L∞) or parameterized by
µ and ν (for the penalty function LP ). In this phase the
computation of all the global (and as many as possible
local) solutions to problems (2) is also addressed. The
second phase, called internal iterations, is described in
subsection 3.2 and is related with the minimization of the
penalty function when µ (and ν) are fixed.

3.1 External iterations

This phase computes a sequence {xk}, where k is the exter-
nal iteration counter, by solving a sequence of subproblems

xk+1 = arg min
x∈Rn

φ(x)

parameterized by the penalty parameters (µ when (3), (4),
or (5) are considered and µ and ν when (6) is considered).

If the optimality stopping criteria is met the algorithm
stops with an approximate solution to (1), otherwise the
penalty parameters are updated and another external
iteration begins.

In order to motivate the penalty update equation for
penalty LP we introduce the Lagrangian function, L(x, λ),
considering only one infinite constraint to simplify the
notation (i.e., considering m = 1).

Let

L(x, λ) = f(x) +
s∑
i=1

λig(x, ti) (7)

where λi are the Lagrange multiplier associated with the
points ti that make the g(x, t) ≤ 0 constraint active.
Note that the ti, i = 1, . . . , s, are the global optima for
problem (2).

Consider also the penalty LP defined for m = 1,



Download English Version:

https://daneshyari.com/en/article/710982

Download Persian Version:

https://daneshyari.com/article/710982

Daneshyari.com

https://daneshyari.com/en/article/710982
https://daneshyari.com/article/710982
https://daneshyari.com

