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a b s t r a c t

This paper studies the flocking with connectivity preservation problem of multiple double integrator
systems subject to a class of external disturbances. We solve the problem by a distributed dynamic
position feedback control law under the standard assumptions. Our approach is a combination of the
potential function technique and observer design. Our result also includes some existing results as special
cases.
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1. Introduction

Since Reynolds proposed three heuristic rules: separation,
alignment, and cohesion for flocking model in Reynolds (1987),
the flocking problem has attracted some attention in control com-
munity. It was shown that the connectivity of the communication
graph is the key for the flocking behavior in Olfati-Saber (2006)
and Su, Wang, and Lin (2009). Different assumptions on the com-
munication graph have been proposed to guarantee flocking, for
example, Tanner, Jadbabaie, and Pappas (2003) studied flocking
problem under the assumption that the graph is connected for all
time, while Zhang, Zhai, and Chen (2011) provided a general anal-
ysis for flocking problem under a jointly connected assumption on
the communication graph.

In many real applications such as rendezvous and flocking, the
graph is defined dynamically and state-dependent. It is more prac-
tical to enable a control law to preserve the connectivity of the
graph instead of assuming the connectivity of the graph. Such a
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problem is called connectivity preservation problem. There are
mainly two techniques to preserve the connectivity of the graph.
The first one is to maximize the second smallest eigenvalue of
Laplacianmatrix associatedwith the graph using convex optimiza-
tion and subgradient descent algorithms (Zavlanos, Egerstedt, &
Pappas, 2011), while the second one is to employ potential func-
tions to maintain the connectivity of the initially connected graph
(Dimarogonas & Johansson, 2010; Ji & Egerstedt, 2007; Su, Wang,
& Chen, 2009; Zavlanos, Jadbabaie, & Pappas, 2007; Zavlanos, Tan-
ner, Jadbabaie, & Pappas, 2009). The connectivity preservation is
mainly studied for multiple single or double integrator systems
where the communication graph is defined by the distance of vari-
ous agents. The purpose of preserving the connectivity among the
agents is to ensure the position consensus among the agents. Such
problem is also called rendezvous problem in some literature. If the
objective of collision avoidance is also imposed, then the problem
can be further called flocking. Depending whether or not a multi-
agent system has a leader, the rendezvous/flocking problem can
be further classified into the leaderless rendezvous/flocking prob-
lem (Ajorlou, Momeni, & Aghdam, 2010; Dimarogonas & Johans-
son, 2010; Ji & Egerstedt, 2007; Zavlanos et al., 2007, 2009), and
leader-following rendezvous/flocking problem (Cao & Ren, 2012;
Dong & Huang, 2013, 2014). In Su, Wang, Chen et al. (2009) and
Su, Wang, and Chen (2010), both leaderless and leader-following
rendezvous/flocking problems were studied.

In this paper, we study the leaderless flockingwith connectivity
preservation problem for a group of double integrator systems sub-
ject to external disturbances. Our problem is different from exist-
ing works (Su, Wang, Chen et al., 2009; Zavlanos et al., 2007, 2009)
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in at least two ways. First, our model as given by (1) in the next
section is subject to external disturbances generated by a class
of autonomous systems called exosystem. Second, we introduce a
simplified bounded potential function that not only guarantees the
connectivity of the graph but also avoids the collision. It is noted
that the leader-following rendezvous problem for multiple double
integrator systems subject to disturbances has also been studied by
ourselves in Dong andHuang (2013, 2014). However, since our sys-
tem in this paper does not have a leader, we do not have to employ
a distributed observer. Thus, as will be elaborated in Remark 3.3,
our analysis is quite different from that in Dong and Huang (2013,
2014), and our control law is much simpler. Moreover, our control
law here not only achieves consensus in velocity but also avoids
collisions.

The rest of this paper is organized as follows. In Section 2, we
will formulate our problem. In Section 3, we will present our main
result, which will be illustrated by an example in Section 4. Finally,
wewill close this paper in Section 5with some concluding remarks.

The following notation will be used throughout this paper:
given the column vectors ai, i = 1, . . . , s, we define col(a1,
. . . , as) = [aT1, . . . , a

T
s ]

T .

2. Problem formulation

Consider a collection of double integrator systems of the
following form

q̇i = pi
ṗi = ui + di, i = 1, . . . ,N

(1)

where qi ∈ Rn denotes the position, pi ∈ Rn denotes the velocity,
ui ∈ Rn is the input and di ∈ Rn is the external disturbance
generated by

ẇi = Siwi, di = Diwi (2)

where wi ∈ Rsi , Si ∈ Rsi×si and Di ∈ Rn×si are known constant
matrices. Without loss of generality, we assume the pair (Di, Si) is
detectable.

Put our system (1) in the state space form:

ẋi = Axi + Bui + Eiwi

yi = Cxi
(3)

where, for i = 1, . . . ,N , xi =


qi
pi


∈ R2n, yi ∈ Rn are the state and

measurement output, respectively. A =


0 1
0 0


⊗ In, B =


0
1


⊗ In,

Ei =


0n×si
Di


, C =


1 0


⊗ In.

We view the system (1) as a multi-agent system of N agents
with the N subsystems of (1) as N followers. With respect to the
system (1), we can define a digraph2 G(t) = (V, E(t))where V =

{1, . . . ,N}with i = 1, . . . ,N , associated with the ith subsystem of
(1), and E(t) ⊆ V × V . The set V is called the node set of G(t) and
the set E(t) is called the edge set of G(t). We use Ni(t) to denote
the neighbor set of the node i for i = 1, . . . ,N .

Let us now characterize the edge set E(t), which is in spirit
similar to that in Dong and Huang (2013, 2014).

Given any r > 0, ϵ2 ∈ (0, r), and ϵ1 ∈ (0, r − ϵ2), for any t ≥ 0,
E(t) = {(i, j) | i, j ∈ V} is defined such that

(1) E(0) = {(i, j) | ϵ1 < ∥qi(0) − qj(0)∥ < (r − ϵ2), i, j =

1, . . . ,N};
(2) if ∥qi(t)− qj(t)∥ ≥ r , then (i, j) ∉ E(t);

2 See Appendix in Dong and Huang (2014) for a summary of digraph.

(3) for i = 1, . . . ,N, j = 1, . . . ,N , if (i, j) ∉ E(t−) and ∥qi(t) −

qj(t)∥ < (r − ϵ2), then (i, j) ∈ E(t).
(4) for i = 1, . . . ,N, j = 1, . . . ,N , if (i, j) ∈ E(t−) and ∥qi(t) −

qj(t)∥ < r , then (i, j) ∈ E(t).

As in Ji and Egerstedt (2007), Su, Wang, Chen et al. (2009) and
Su et al. (2010), ϵ2 is used to introduce the hysteresis effect for
adding the new links, and the role of ϵ1 ∈ (0, r − ϵ2) is the same
as proposed in Wen, Duan, Su, Chen, and Yu (2012).

Wewill consider the dynamic control law in the following form:

ui = hi(qi − qj, ζi, ζj), i = 1, . . . ,N

ζ̇i = gi(qi, qj, ζi, ζj), j ∈ Ni(t)
(4)

where hi, gi are sufficiently smooth functions to be specified later,
and ζi ∈ R(2n+si) is used to estimate col(qi, pi, wi).

Remark 2.1. If we allow the dimension of ζi, i = 1, . . . ,N , to
be zero and assume the velocity information is available, then (4)
reduces to the static state feedback control law. A typical static
feedback control law is as follows:

ui = −


j∈Ni(t)

∇qiψ(∥qi − qj∥)−


j∈Ni(t)

(pi − pj) (5)

where ψ(·) is the so-called potential function. By designing
different potential functions, a control law of the form (5) can be
used to solve rendezvous with connectivity preservation problem
(Su et al., 2010), flocking with connectivity preservation problem
(Zavlanos et al., 2007, 2011, 2009) for systems of the form (1)
with the external disturbance di = 0. However, this static control
law cannot handle the external disturbance di. Therefore, we need
to introduce the dynamic control law of the form (4). Since the
control law (4) depends neither on the velocity nor on the external
disturbance, we call it the dynamic distributed position feedback
control law.

Our problem is called flocking with connectivity preservation
and is described as follows:

Definition 2.1. Given themulti-agent system composed of (1) and
(2), r > 0, r0 ∈ (0, r), ϵ1 ∈ (0, r0), ϵ2 ∈ (0, r − r0), and arbitrary
positive real numbers ρi, κi, i = 1, . . . ,N , find a distributed
control law of the form (4) such that, for all initial conditions
wi(0), qi(0), pi(0), ζi(0), i = 1, . . . ,N , that make G(0) connected,
and satisfy ∥qi(0) − qj(0)∥ > ϵ1, ∥pi(0) − pj(0)∥ ≤ ρi, and
∥ζi(0)− col(qi(0), pi(0), wi(0))∥ ≤ κi, the closed-loop system has
the following properties:

(1) G(t) is connected for all t ≥ 0;
(2) limt→∞(pi − pj) = 0, i, j = 1, . . . ,N;
(3) Collision can be avoided among agents, that is, ∥qi(t)−qj(t)∥ >

0, i, j = 1, . . . ,N , for all t ≥ 0.

As in Dong and Huang (2013, 2014), the numbers ρi and κi are
to define some closed balls in which the initial states of the system
are allowed to stay. They are introduced so that the parameters of
our control law will be independent of the initial conditions of the
system.

3. Main result

The flocking problem has been considered by various potential
function techniques. A bounded potential function was proposed
in Wen et al. (2012) as follows.

ψ(s) =
(s − r0)2(r − s)

s +
r20 (r−s)
κ1+Q max

+
s(s − r0)2

r − s +
s(r−r0)2
κ2+Q max

, 0 ≤ s ≤ r (6)

where κ1 ≥ 0, κ2 ≥ 0 and r0 ∈ (ϵ1, r − ϵ2).
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