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a b s t r a c t

In this paper we propose a fully distributed dual gradient algorithm for minimizing linearly constrained
separable convex problems and analyze its rate of convergence. In particular, we prove that under the
assumption of strong convexity and Lipschitz continuity of the gradient of the primal objective function
we have a global error bound type property for the dual problem. Using this error bound property we
devise a fully distributed dual gradient scheme, i.e. a gradient scheme based on a weighted step size, for
which we derive global linear rate of convergence for both dual and primal suboptimality and for primal
feasibility violation. Numerical simulations are also provided to confirm our theory.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, many engineering applications which appear in
the context of communications networks or networked sys-
tems (e.g. distributed model predictive control (DMPC) Necoara,
Nedelcu, & Dumitrache, 2011, network utility maximization
(NUM) Beck, Nedic, Ozdaglar, & Teboulle, 2014, and direct cur-
rent optimal power flow for a power system (DC-OPF) Bakirtzis &
Biskas, 2003) can be posed as large scale linearly constrained sepa-
rable convex problems. Due to the large dimension and the separa-
ble structure of these problems, distributed optimization methods
have become an appropriate tool for solving them. Distributed
methods are based on decomposition (Necoara et al., 2011), which
consists in dividing the original large problem into smaller sub-
problems. Decomposition methods can be divided into two main
classes: primal and dual decomposition. While in the primal de-
composition methods the optimization problem is solved using
the original formulation and variables, in dual decomposition the
constraints are moved into the cost using the Lagrange multipli-
ers and then the dual problem is solved (Necoara et al., 2011). In
many applications, e.g. (DMPC), (NUM) and (DC-OPF), when the

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Constantino M.
Lagoa under the direction of Editor Richard Middleton.

E-mail addresses: ion.necoara@acse.pub.ro (I. Necoara),
valentin.nedelcu@acse.pub.ro (V. Nedelcu).
1 Tel.: +40 21 402 9195.

constraints set is complicated (i.e. the projection on this set is hard
to compute), dual decomposition is more effective since a primal
approach would require at each iteration a numerically expensive
projection.

First order decomposition methods for solving dual problems
have been extensively studied in the literature. Convergence rate
analysis for the dual subgradient method is given e.g. in Nedic and
Ozdaglar (2009), where estimates of order O(1/

√
k) for subopti-

mality and feasibility violation of an averaged primal sequence are
provided, with k denoting the iteration counter. In Necoara and
Nedelcu (2014) (Giselsson, Doan, Keviczky, De Schutter, & Rantzer,
2013 and Patrinos & Bemporad, 2014) the authors propose inex-
act (exact) dual fast gradient algorithms for which estimates of
order O


1/k2


in an averaged primal sequence are provided for

primal suboptimality and feasibility violation. To our knowledge,
the first result on the linear convergence of dual gradient method
was provided in Luo and Tseng (1993). However, the linear con-
vergence was valid only locally using a local error bound condition
that estimates the distance from the dual optimal solution set in
terms of the norm of a proximal residual. Finally, very few results
were known in the literature on distributed implementations of
dual gradient type methods since most of the papers enumerated
above require a centralized step size. Recently, in Beck et al. (2014)
and Necoara and Clipici (2013), distributed (dual fast) gradient al-
gorithms are given, where the step size is chosen in a distributed
fashion.

Contributions: In this paper we propose a fully distributed dual
gradient method generating approximate primal feasible and op-
timal solutions, but improving the convergence rate w.r.t. existing
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results. Under the assumptions of strong convexity and Lipschitz
continuity of the gradient of the primal objective function, which
are often satisfied in practical applications (e.g. (DMPC), (NUM) or
(DC-OPF)), we prove that the corresponding dual problem satis-
fies a certain global error bound property that estimates the dis-
tance from the dual optimal solution set in terms of the norm of
a proximal residual. In these settings we analyze the convergence
behavior of a distributed dual gradient algorithm, for whichwe are
able to provide global linear convergence rate on primal subopti-
mality and feasibility violation for the last primal iterate. More-
over, our algorithm is fully distributed since is based on aweighted
step size, as opposed to typical dual distributed schemes existing in
literature, where a centralized step size is used and sublinear con-
vergence is proved (Giselsson et al., 2013; Meinel, Ulbrich, & Al-
brecht, 2014; Necoara & Nedelcu, 2014; Necoara et al., 2011; Nedic
& Ozdaglar, 2009). Note that some proofs are left out due to space
restrictions (see Necoara & Nedelcu, 2013 for a complete presen-
tation of our results).

Notations. For z, y ∈ Rn we denote the Euclidean inner product
(norm) ⟨z, y⟩ = zTy (∥z∥ =

√
⟨z, z⟩) and the infinity norm ∥z∥∞ =

maxi |zi|. For a matrix G ∈ Rm×n, ∥G∥ denotes its spectral norm.
Also, we denote the orthogonal projection onto the nonnegative
orthant Rn

+
by [z]+ and the orthogonal projection onto the convex

set D by [z]D. For a positive definite matrix W we define norm
∥z∥W =

√
zTWz and the projection of vector z onto a convex set D

w.r.t. norm ∥·∥W by [z]WD . For amatrix A, Ai is its ith (block) column.

2. Problem formulation

We consider the following large scale linearly constrained sep-
arable convex optimization problem:

f ∗
= min

zi∈Rni
f (z)


=

M
i=1

fi(zi)


(1)

s.t.: Az = b, Cz ≤ c,

where fi : Rni → R are convex functions, z =

zT1 · · · zTM

T
∈ Rn,

A ∈ Rp×n, C ∈ Rq×n, b ∈ Rp and c ∈ Rq. To our problem (1) we
associate a bipartite communication graph G = (V1, V2, E), where
V1 = {1, . . . ,M}, V2 =


1, . . . , M̄


and E ∈ {0, 1}M̄×M represents

the incidencematrix. e.g., in the context of (NUM) and (DC-OPF), V1
denotes the set of sources, V2 the set of links between sources and
the incidencematrix E models theway sources interact. In (DMPC),
V1 = V2 represents the set of interacting subsystems, while the in-
cidence matrix E indicates the dynamic couplings between these
subsystems. We assume that A and C are block matrices with the
blocks Aji ∈ Rpj×ni and Cji ∈ Rqj×ni , where

M
i=1 ni = n,

M̄
j=1 pj =

p and
M̄

j=1 qj = q. We also assume that if Eji = 0, then both blocks
Aji and Cji are zero. In these settings we allow a block Aji or Cji to
be zero even if Eji = 1. We also introduce the index sets: N̄i =
j ∈ V2 : Eji ≠ 0


and Nj =


i ∈ V1 : Eji ≠ 0


for all i ∈ V1, j ∈ V2,

which describe the local information flow in the graph. Note that
the cardinality of the sets N̄i and Nj can be viewed as a measure
for the degree of separability of problem (1). Further, we make the
following assumptions regarding optimization problem (1):

Assumption 2.1. (a) The functions fi have Lipschitz continuous
gradient with constants Li and are σi-strongly convex w.r.t. the
Euclidean norm ∥ · ∥ on Rni (Nesterov, 2004).

(b) Matrix A has full row rank and there exists a feasible point z̃ for
problem (1) such that Az̃ = b and Cz̃ < c.

Assumption 2.1 implies that strong duality holds:

f ∗
= max

ν∈Rp,µ∈Rq
+

d(ν, µ), (2)

where d(ν, µ) denotes the dual function of (1):

d(ν, µ) = min
z∈Rn

L(z, ν, µ), (3)

with the Lagrangian function L(z, ν, µ) = f (z) + ⟨ν, Az − b⟩ +

⟨µ, Cz − c⟩. For simplicity of the exposition we introduce the
following notations: G = [AT CT

]
T and g = [bT cT ]T . Since fi are

strongly convex functions, then f is also strongly convex w.r.t. the
Euclidean norm, with convexity parameter e.g. σf = mini=1,...,M σi.
Further, the dual function d is differentiable and its gradient w.r.t.
(ν, µ) is given by the following expression (Necoara & Nedelcu,
2014):∇d(ν, µ) = Gz(ν, µ)−g , where z(ν, µ)denotes the unique
optimal solution of the inner problem (3), i.e.:

z(ν, µ) = argmin
z∈Rn

L(z, ν, µ). (4)

Moreover, the gradient ∇d of the dual function is Lipschitz contin-
uous w.r.t. Euclidean norm ∥·∥, with constant (Necoara & Nedelcu,
2014): Ld = ∥G∥

2/σf. If we denote by νN̄i =

νj

j∈N̄i

and by µN̄i =
µj

j∈N̄i

we can observe that the dual function can bewritten in the

following separable form: d(ν, µ) =
M

i=1 di(νN̄i , µN̄i)− ⟨ν, b⟩ −

⟨µ, c⟩, with

di(νN̄i , µN̄i) = min
zi∈Rni

fi(zi)+ ⟨ν, Aizi⟩ + ⟨µ, Cizi⟩

= min
zi∈Rni

fi(zi)+


j∈N̄i


AT
jiνj + CT

jiµj, zi

. (5)

In these settings, we have that the gradient ∇di is:

∇di(νN̄i , µN̄i) = GN̄izi(νN̄i , µN̄i),

where GN̄i =


Aji

j∈N̄i

Cji

j∈N̄i


and zi(νN̄i , µN̄i) denotes the unique opti-

mal solution in (5). Note that ∇di is Lipschitz continuous w.r.t. Eu-
clidean norm ∥ · ∥, with constant (Necoara & Nedelcu, 2014): Ldi =GN̄i

2 /σi. For simplicity, we also consider the notation λ =
νTµT

T and we denote the effective domain of the dual function
by D = Rp

× Rq
+. The following lemma, which is a distributed ver-

sion of descent lemma (see e.g. Beck et al., 2014, Necoara & Clipici,
2013 and Necoara & Nedelcu, 2013 for a proof), is central in our
derivations of a distributed dual algorithm.

Lemma 2.2. Let Assumption 2.1(a) hold. Then, the following inequal-
ity is valid:

d(λ) ≥ d(λ̄)+

∇d(λ̄), λ− λ̄


−

1
2
∥λ− λ̄∥2

W ∀λ, λ̄ ∈ D, (6)

where the matrix W = diag(Wν,Wµ) with the matrices Wν =

diag


i∈Nj
Ldi Ipj; j ∈ V2


and Wµ = diag


i∈Nj

Ldi Iqj; j ∈ V2


.

We denote by Λ∗ the set of optimal solutions of dual problem
(2). According to Hiriart-Urruty and Lemarechal (1996, Theorem
2.3.2), if Assumption 2.1(b) holds for our original problem (1), then
Λ∗ is nonempty, convex and bounded. Then, for any λ ∈ Rp+q, we
can define the following finite quantity:

R(λ) = min
λ∗∈Λ∗

∥λ∗
− λ∥W . (7)

In the following sections, we analyze the structural properties of
the dual problem (2) and then we propose a fully distributed dual
gradient method for solving this problem which exploits the sep-
arability of the dual function and allow us to recover a suboptimal
and nearly feasible solution for our original problem (1) in linear
time.
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