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a b s t r a c t

State bounding observation based on zonotopes is the subject of this paper. Dealing with zonotopes
is motivated by set operations resulting in simple matrix calculations with regard to the often huge
number of facets and vertices of the equivalent polytopes. Discrete-time LTV/LPV systems with state
and measurement uncertainties are considered. Based on a new zonotope size criterion called FW -radius,
and by merging optimal and robust observer gain designs, a Zonotopic Kalman Filter (ZKF) is proposed
with a proof of robust convergence. The notion of covariation is introduced and results in an explicit
bridge between the zonotopic set-membership and the stochastic paradigms for Kalman Filtering. No
intersection is used and the influence of the reduction operator limiting to a tunable maximum the size
of the matrices involved in the zonotopic set computations is fully taken into account in the LMI-based
robust stability analysis. A numerical example illustrates the effectiveness of the proposed ZKF.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

State observation is often a key step for the satisfaction of ad-
vanced monitoring and/or control requirements in many engi-
neering applications. Explicitly characterizing how the model and
measurement uncertainties can influence the possible state val-
ues is also useful, not only when an automated decision-making
is further required (e.g. fault diagnosis Ding, 2008), but also in
some control frameworks (Efimov, Raïssi, & Zolghadri, 2013). Two
paradigms can be used to model uncertainties: The stochastic one
relies on probability theory and mainly deals with random vari-
ables. Usually, assumptions about their probability distribution are
required. For instance, state estimators based on Kalman filtering
(Kalman, 1960; Lewis, 1986; Maybeck, 1979; Sorenson, 1983) rely
on covariance matrices to model usually Gaussian state and mea-
surement random perturbations. Though well suited to take the
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distribution of randomnoises into account, thismodeling of uncer-
tainty may be less representative when dealing with large distur-
bances mostly related to not well-known deterministic behaviors
(e.g. load torque of a motor under incompletely specified operat-
ing conditions). The set-membership paradigm relying on unknown
but bounded uncertainties (Schweppe, 1968) can lead to descrip-
tions requiring no assumption about the probability distributions.
Variants of ellipsoidal state sets have been proposed (Bertsekas
& Rhodes, 1971; Kurzhanskiy & Valyi, 1997) as well as solutions
addressing robustness issues (Petersen & Savkin, 1999). Interval
analysis (Jaulin, Kieffer, Didrit, & Walter, 2001; Moore, 1966) has
also led to state bounding algorithms, either based on set pre-
dictions/intersections (Chisci, Garulli, & Zappa, 1996; Combastel,
2003; Jaulin et al., 2001; Raïssi, Ramdani, & Candau, 2004) resem-
bling Kalman filtering, or based on interval observers (Combastel,
2013; Gouzé, Rappaport, & Hadj-Sadok, 2000; Mazenc & Bernard,
2011; Raïssi, Efimov, & Zolghadri, 2012). The latter usually pro-
vide computationally efficient set-membership estimations with
proven stability, but essentially deal with interval hulls whichmay
be a rough enclosure of the consistent state sets. Though better tak-
ing domain shapes into account, single ellipsoids may hardly give
tight enclosures of interval vectors and general polytopes (Ziegler,
1994) often suffer from the complexity of vertices/facets enumer-
ation wrt the space dimension. This motivates the focus of this pa-
per on zonotopes (Kühn, 1998; Ziegler, 1994), a class of polytopes
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whose shape is implicitly represented by a rectangular matrix. Ba-
sic operations over zonotopes often reducing to simple matrix cal-
culations, zonotopic state bounding observers have already been
proposed (Alamo, Bravo, & Camacho, 2005; Combastel, 2003, 2005;
Le, Stoica, Alamo, Camacho, &Dumur, 2013;Montes de Oca, Puig, &
Blesa, 2012). In Le et al. (2013), the so-called P-radius is introduced
as a zonotope size criterion and permits to prove that zonotopic
state estimates have non-increasing sizes in time, for time-
invariant systems under the assumption that the required com-
plexity reduction operator (Kühn, 1998) has a negligible influence.

By minimizing a matrix norm serving as a zonotope size crite-
rion named F-radius (FW -radius if the norm isweighted) and by us-
ing the covariation of a zonotopewhich is a set-membership analog
to covariance, a Zonotopic Kalman Filter (ZKF) is here derived from
a discrete time-varying model subject to unknown but bounded
uncertainties. ZKF computes minimal zonotopic sets enclosing all
the admissible states. Explicit links between the set-membership
and the stochastic paradigms for Kalman filtering are given. A ro-
bust stability analysis using Linear Matrix Inequalities (LMI) and
fully taking the reduction operator into account is proposed. Com-
pared to previous zonotopic observers using a singular value de-
composition (svd), the complexity order of ZKF is significantly
improved.

The paper organization begins with preliminaries in Section 2
and the problem formulation in Section 3. The optimal observer
gain minimizing the FW -radius of the predicted zonotopic state set
is studied in Section 4. The ZKF algorithm is given in Section 5.
After comparison with the stochastic Kalman Filter in Section 6,
the robust stability is analyzed in Section 7. A numerical example
illustrates the efficiency of ZKF in Section 8.

2. Preliminaries

2.1. Matrix calculus (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994;
Golub & Van Loan, 1996)

∂X f (X) is a short notation for ∂ f (X)/∂X . If the function f returns
scalar values and X = [Xij] is a matrix, then ∂X f (X) = [∂Xji f (X)].
tr(.) denoting the trace of a square matrix (tr(A) =


i Aii), and

X, A, B, C being matrices of appropriate size, it comes:

tr(A) = tr(AT ), tr(AB) = tr(BA), (1)

∂X tr(AXTB) = ATBT , (2)

∂X tr(AXBXTC) = BXTCA + BTXTATCT . (3)

The matrix M is spd if it is symmetric (M = MT ) and positive def-
inite (M ≻ 0 i.e. ∀x ≠ 0, xTMx > 0). Then, M−1 exists and is spd.
Similar definitions and properties hold for the negative case. The
Schur complement of C in L = [A, B; BT , C] is S = A − BC−1BT and
L ≻ 0 ⇔ A ≻ 0 ∧ S ≻ 0. Let R = [r1, . . . , rp] ∈ Rn×p be a ma-
trix with p non zero columns and M ∈ Rn×n. For any such R, if M
is spd, then RTMR is spd and tr(RTMR) > 0. Similarly, M ≺ 0 ⇒

tr(RTMR) < 0.
Let W ∈ Rn×n be a spd matrix and R ∈ Rn×p, ∥R∥F ,W =
tr(RTWR) is theweighted Frobenius normof R. ∥R∥F , obtained for

W = In (identity: no weight), is invariant under orthogonal trans-

formations. Also: ∥R∥2
F ,W =

p
i=1 ∥ri∥2

W , where ∥ri∥W =


rTi Wri

is a weighted vector norm in Rn.

2.2. Zonotopes

A zonotope ⟨c, R⟩ ⊂ Rn with center c ∈ Rn and generator ma-
trix R ∈ Rn×p is a polytopic set defined as the linear image of the
unit hypercube [−1,+1]p ⊂ Rp by R:

⟨c, R⟩ = {c + Rs, ∥s∥∞ ≤ 1}. (4)

⟨R⟩ = ⟨0, R⟩ is called centered zonotope. Any permutation of the
columns of R leaves it invariant. The Minkowski sum of two sets S1
and S2 is S1 ⊕ S2 = {s1 + s2, (s1, s2) ∈ S1 × S2}. The linear image of
the set S ⊂ Rn by L ∈ Rq×n is L⊙S = {Ls, s ∈ S}. Zonotopes form a
class of polytopic sets implicitly represented bymatrices and lead-
ing to efficient set computations (Kühn, 1998; Ziegler, 1994). This
class is closed under Minkowski sum ⊕ (computed from a matrix
concatenation like [R1, R2] in (5)) and linear image ⊙ (computed
from a matrix product like LR in (6)):

⟨c1, R1⟩ ⊕ ⟨c2, R2⟩ = ⟨c1 + c2, [R1, R2]⟩, (5)
L ⊙ ⟨c, R⟩ = ⟨Lc, LR⟩. (6)
⟨c, R⟩ ⊂ ⟨c, b(R)⟩, b(R) = diag(|R|1), (7)

(7) shows how a zonotope ⟨c, R⟩ can be enclosed within an aligned
box (or interval hull) defined by b(R) ∈ Rn×n, where | · | is the
element-by-element absolute value operator, 1 is a column vec-
tor of ones, and diag(.) returns a diagonal matrix from a vector
of diagonal elements. Such a box enclosure usually being too con-
servative, a reduction operator can be used: Kühn (1998). In this
work, aweighted version of the reduction operator first introduced
in Combastel (2003) and improved in Combastel (2005) will be
denoted ↓q,W , where q ≥ n specifies the maximum number of
columns of matrix ↓q,WR satisfying the inclusion property ⟨R⟩ ⊂

⟨↓q,WR⟩. The reduction operator ↓q,W first consists in sorting the
columns of R ∈ Rn×p on decreasing weighted vector norm ∥ · ∥W
(8) and enclosing the set ⟨R<⟩ generated by the p − q + n smaller
columns into a box:

R = [r1, . . . , rj, . . . , rp], ∥rj∥2
W ≥ ∥rj+1∥

2
W , (8)

If p ≤ q, Then ↓q,WR = R, Else

↓q,WR = [R>, b(R<)] ∈ Rn×q, (9)

R> = [r1, . . . , rq−n], R< = [rq−n+1, . . . , rp]. (10)

3. Problem formulation

The zonotopic state observation of systems modeled by uncer-
tain time-varying discrete-time dynamics as in (11)–(12) is the
main subject of this paper:

xk+1 = Akxk + Bkuk + Ekvk, vk ∈ ⟨0, Inv ⟩, (11)

yk = Ckxk + Dkuk + Fkwk, wk ∈ ⟨0, Inw ⟩, (12)

x0 ∈ ⟨c0, R0⟩ ⊂ Rnx . (13)

nM (resp. pM ) denoting the number of lines (resp. columns) of any
matrix M , xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , vk ∈ Rnv , wk ∈ Rnw re-
spectively refer to the state, the known input, the known output
(measurement), the state evolution uncertainty, and the measure-
ment uncertainty vectors. ∀k ≥ 0, Ak, Bk, Ek, Ck,Dk, Fk denote non
empty matrices with appropriately fixed size. All the related ma-
trix sequences, e.g. A: = (A0, . . . , Ak, . . .), k ∈ N, are not neces-
sarily known a priori, but eachmatrix with time index k is assumed
to be known at time k, possibly expressed as a matrix function, e.g.
A(.) : Rnα → Rnx×nx , of a known (measured) scheduling parameter
vector αk ∈ Rnα so that Ak = A(αk), Bk = B(αk), etc. Notice that
a robust detectability assumption further stated in Section 7 will
be required to prove the convergence of the proposed set-based
observer. The initial state x0 is assumed to belong to a zonotope
⟨c0, R0⟩ specified by its center c0 ∈ Rnx and non empty generator
matrix R0 ∈ Rnx×pR0 (13), (4). ∀k ≥ 0, vk ∈ [−1,+1]nw = ⟨0, Inv ⟩
where Inv is the identity matrix of size nv × nv i.e. vk is bounded
by a unit hypercube expressed as a centered zonotope in (11), and
idem for wk in (12). For the sake of simplified notations, the dis-
crete time index k can be omitted and the index + replaces k + 1
in the following.
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