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a b s t r a c t

In this paper, we study the problem of formation keeping of a network of strictly passive systems when
very coarse information is exchanged. We assume that neighboring agents only know whether their rel-
ative position is larger or smaller than the prescribed one. This assumption results in very simple control
laws that direct the agents closer or away from each other and take values in finite sets. We show that
the task of formation keeping while tracking a desired velocity and rejecting matched disturbances is still
achievable under the very coarse information scenario. In contrast with other results of practical conver-
gence with coarse or quantized information, here the control task is achieved exactly.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed motion coordination of mobile agents has attracted
increasing attention in recent years owing to its wide range of ap-
plications from biology and social networks to sensor/robotic net-
works. Distributed formation keeping control is a specific case of
motion coordination which aims at reaching a desired geometrical
shape for the positions of the agents while tracking a desired ve-
locity. This problem has been addressed with different approaches
e.g. Arcak (2007), Bai, Arcak, and Wen (2011), Bullo, Cortés, and
Martınez (2009), Mesbahi and Egerstedt (2010), Ren and Beard
(2007) and Ren and Cao (2011). In problems of formation control,
an important component, besides the dynamics of the agents and
the graph topology, is the flow of information among the agents.
In fact, the usual assumption in the literature on cooperative con-
trol is that a continuous flow of perfect information is exchanged
among the agents. However, due to the coarseness of sensors
and/or to communication constraints, the latter might be a restric-
tive requirement. To cope with the problem, the use of distributed
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quantized feedback control has been proposed in the literature
both for the discrete-time (Kashyap, Başar, & Srikant, 2007) and
the continuous-time dynamic agents (Ceragioli, De Persis, & Frasca,
2011; Chen, Lewis, & Xie, 2011; Cortés, 2006; Dimarogonas & Jo-
hansson, 2010; Xargay, Choe, Hovakimyan, & Kaminer, 2012). In
fact, in formation control by quantized feedback control, infor-
mation is transmitted among the agents whenever measurements
cross the thresholds of the quantizer. At these times, the corre-
sponding quantized value taken from a discrete set is transmitted.
This allows to deal naturally bothwith the continuous-time nature
of the agents’ dynamics and the discrete nature of the information
transmission process without the need to rely on sampled-data
models (Ceragioli et al., 2011; De Persis & Jayawardhana, 2012).
Main contribution. In this paper, we study the problem of dis-
tributed position-based formation keeping of a group of agents
with strictly passive dynamicswhich exchange binary information.
The binary information models a sensing scenario in which each
agent detects whether or not the components of its current dis-
tance vector from a neighbor are above or below the prescribed
distance and apply a force (in which each component takes a bi-
nary value) to reduce or respectively increase the actual distance.
A similar coarse sensing scenario was considered in Yu, LaValle,
and Liberzon (2012) in the context of the so-called ‘‘minimalist’’
robotics.

Remarkably, despite such a coarse information and control ac-
tion, we show that the control law guarantees exact achievement
of the desired formation. This is an interesting result, since stati-
cally quantized control inputs typically generate practical conver-
gence, namely the achievement of an approximate formation in
which the distance from the actual desired formation depends on
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the quantizer resolution (De Persis & Jayawardhana, 2012). Here
the use of binary information allows us to conclude asymptotic
convergence without the need to dynamically update the quan-
tizer resolution.
Motivation. There are two main aspects that triggered our interest
for the problem above.

(i) The use of binary information in coordination problems (Chen
et al., 2011; Cortés, 2006) has been proven useful to the design
and real-time implementation of distributed controls for sys-
tems of first- or second-order agents in a cyber–physical en-
vironment (see e.g. De Persis & Frasca, 2013, De Persis, Frasca,
& Hendrickx, 2013 and Nowzari & Cortés, 2012). We envision
that a similar role will be played by the results in this paper
for a larger class of coordination problems (see De Persis et al.,
2013 for an early result in this respect).

(ii) The resulting control laws are implemented by very simple
directional commands (such as ‘‘move north’’, ‘‘move north-
east’’, ‘‘stay still’’, etc).We also show that the presence of coarse
information does not affect the ability of the proposed con-
trollers to achieve the formation in a leader–follower setting
in which the desired reference velocity is only known to the
leader.
This paper adopts a similar setting as in De Persis and
Jayawardhana (2012) but controllers and analyses are dif-
ferent. Moreover, the paper investigates the formation con-
trol problem with unknown reference velocity tracking and
matched disturbance rejection that was not considered in De
Persis and Jayawardhana (2012). Compared with Yu et al.
(2012), where also coarse information was used for ren-
dezvous, the results in our contribution apply to a different
class of systems and to a different cooperative control problem.
Early results with the same sensing scenario but for a forma-
tion of double integrators have been presented in Jafarian and
De Persis (2013).

The paper is organized as follows: Section 2 introduces the
problem statement along with some motivations and notations.
Analysis of the formation keeping problem with coarse data in the
case of known/unknown reference velocity is studied in Section 3.
Section 4 investigates the problem of formation keeping with
coarse data in the presence ofmatched input disturbances. Related
simulations are presented in Section 6. The paper is summarized in
Section 7.
Notation. Given two sets S1, S2, the symbol S1 × S2 denotes the
Cartesian product of two sets. This can be iterated. The symbol
Śm

k=1 Sk denotes S1 × S2 × · · · × Sm. For a set S, card(S) denotes
the cardinality of the set S. Given a matrix M of real numbers, we
denote by R(M) and N (M) the range and the null space, respec-
tively. The symbols 1, 0 denote vectors or matrices of all 1 and 0
respectively. Sometimes the size of the matrix is explicitly given.
Thus, 1N is the N-dimensional vector of all 1. Ip is the p × p iden-
tity matrix. Given two matrices A, B, the symbol A⊗ B denotes the
Kronecker product.A = block.diag{A1, . . . , AN}denotes a diagonal
matrix AN×N such that Ai is its ith diagonal element.

2. Preliminaries

2.1. The multi-agent system

In this subsection, we review the passivity-based approach
to coordination control (Arcak, 2007, see also Bai et al., 2011,
Bürger, Zelazo, & Allgöwer, 2011, De Persis & Jayawardhana, 2012
and Munz, Papachristodoulou, & Allgöwer, 2011). A network of N
agents in Rp are considered. For each agent i, xi ∈ Rp represents its
position. The communication topology of the network is assumed

Fig. 1. The dynamics of each agent is assumed to be composed of a strictly passive
system and an integrator. The system Hi is strictly passive from an external input
ui to the velocity error yi .

to be modeled by a connected and undirected graph G = (V , E),
where V is a set of N nodes and E ⊆ V × V is a set ofM edges con-
necting the nodes. Label one end of each edge in E with a positive
sign and the other end with a negative sign. We define the relative
position zk as follows

zk =


xi − xj if node i is the positive end of the edge k
xj − xi if node j is the positive end of the edge k

where xi ∈ Rp is the position of agent i expressed in an inertial
frame. We define the N × M incidence matrix B associated with
the graph G as follows

bik =


+1 if node i is the positive end of the edge k
−1 if node j is the positive end of the edge k
0 otherwise.

By definition of B, we can represent the relative position variable
z, with z , [zT1 . . . zTM ]

T , z ∈ RpM , as a function of the position vari-
able x, namely

z = (BT
⊗ Ip)x, (1)

which implies that z belongs to the range space R(BT
⊗ Ip).

We denote the network desired reference velocity by v∗(t). This
is the reference velocity to which the velocities of all the agents
should converge. Moreover, each agent is expected to track its own
desired (time-varying) reference velocity denoted by vr

i (t). If the
desired network velocity is known to all of the agents, we have
vr
i (t) = v∗(t). Otherwise, each agent will be equipped with an ap-

propriate controller (as in Section 3.2) to recover v∗(t), that is to
guarantee that vr

i (t) converges to v∗(t). This implies that by track-
ing vr

i (t), each agent eventually tracks v∗(t).
We assume that the velocity of each agent is given by

ẋi = Hi{ui} + vr
i , (2)

where Hi{ui} represents a system with dynamics (as in Fig. 1)

Hi :


ξ̇i = fi(ξi) + gi(ξi)ui
yi = hi(ξi)

(3)

where ξi ∈ Rni is the state variable, ui ∈ Rp is the control input,
yi ∈ Rp is the velocity error, and the exogenous signal vr

i ∈ Rp is
the reference velocity for agent i. Themaps fi, gi and hi are assumed
to be locally Lipschitz such that fi(0) = 0, hi(0) = 0, and gi(0) is
full column-rank.

Notice that the output yi of (3) is the velocity tracking error
ẋi − vr

i , namely

yi = ẋi − vr
i . (4)

The systemHi is assumed to be strictly passive from the input ui to
the velocity error yi. Since the system Hi is strictly passive, there
is a continuously differentiable storage function Si : Rni → R+

which is positive definite and radially unbounded and satisfies

∂Si
∂ξi

[fi(ξi) + gi(ξi)ui] ≤ −Wi(ξi) + yiTui (5)

where Wi is a continuous positive function andWi(0) = 0.
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