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a b s t r a c t

We consider a class of dynamic games played over an event tree, where the players cooperate to optimize
their expected joint payoff. Assuming that the players adopt the core as the solution concept of the
cooperative game, we devise a node-decomposition of the imputations in the core such that each player
finds it individually rational at each node to stick to cooperation rather than switching to a noncooperative
strategy. We illustrate our approach with an example of pollution control.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a class of stochastic discrete-time dynamic games,
where the uncertainty is represented by an exogenously given
event tree, that is, the randomprocess is not influencedby theplay-
ers’ actions. This class of games, which involves flow (control) and
stock (state) variables, is useful to model competition and coop-
eration between players interacting repeatedly overtime.1 As an
example, the set of players could be firms belonging to the same
industry, where each firm invests in advertising (control variable)
to increase its goodwill (state variable),with the consumer demand
for each firm’s brand being a function of all firms goodwill stocks
and some random event (weather, state of the economy, etc.).
This class of games was initially introduced in Haurie, Zaccour,
and Smeers (1990) and Zaccour (1987) to study noncooperative
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1 The main difference between this class of games and classical stochastic games

is that here players cannot influence the transition between one decision node
(or state) and another one.

equilibria in the European natural gas market, which involves
four suppliers competing over a long-term planning horizon in
nine markets described by stochastic demand laws. The solution
concept was termed S-adapted equilibrium, where the S stands
for sample of realizations of the random process (see Haurie,
Krawczyk, & Zaccour, 2012 for details). Genc, Reynolds, and Sen
(2007), Genc and Sen (2008), Pineau andMurto (2003) and Pineau,
Rasata, and Zaccour (2011) used this formalism to model dereg-
ulated electricity markets and predict equilibrium investments in
different generation technologies.

In all the references above, the mode of play is noncooperative.
Recently, Reddy, Shevkoplyas, and Zaccour (2013) assumed that
the players can cooperate and proposed a time-consistent Shapley
value to share the benefits of cooperation among the participating
players. A cooperative solution is time consistent if, at any inter-
mediate instant of time, the cooperative payoff-to-go dominates
the noncooperative payoff-to-go, for each player. Put differently,
time consistency means that, at any intermediate instant of time,
the cooperative payoff-to-go belongs to the same cooperative so-
lution chosen by the players at the beginning of the game. There
is a rich literature in differential games focusing on the design of
time-consistent mechanisms to sustain cooperation overtime. The
concept of time consistency and its implementation in cooperative
differential games was initially proposed in Petrosjan (1977). For a
comprehensive coverage of this literature, see the book by Yeung
and Petrosjan (2005) and the survey by Zaccour (2008). The main
contribution in Reddy et al. (2013) with respect to this literature
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is in the determination of a time-consistent Shapley value for the
class of dynamic games played over event tree. The authors show
that in any subgame starting at any node in the event tree, each
player is better off receiving his expected Shapley payment rather
than his expected Nash-equilibrium payoff.

In this paper, we consider the case where the players adopt the
core as a solution concept to the cooperative game. In particular,
we show that it is possible to construct an imputation that belongs
to the node-consistent core. We use the term node-consistent to
emphasize that the payoff-dominance property akin to sustainabil-
ity of cooperation holds for any node (and not only period) in the
event tree.

The literature on time consistency of the core in stochastic dy-
namic games is sparse, with Predtetchinski (2007) and Xu and
Veinott (2013) being the closest to what we are doing here. Be-
fore highliting the differences with these two papers, we note
that Chander and Tulkens (1997), Filar and Petrosjan (2000), Ger-
main, Toint, Tulkens, and de Zeeuw (2003) and recently Lehrer and
Scarsini (2013) also studied time consistency of the core (not nec-
essarily using the same wording) in deterministic dynamic games.
In Filar and Petrosjan (2000) the characteristic function deter-
mining transferable utility game (TU-game) at each time period
changes over time according to some dynamics, and the values
of the characteristic function for the whole game are determined
as the sum of the corresponding values of the stage characteristic
functions. In Lehrer and Scarsini (2013), the payoff of a coalition de-
pends on the history of allocations, and any coalition is allowed to
deviate at any time. Interestingly, a deviation induces a structural
change, i.e., that the deviating coalition becomes the grand coali-
tion in a new dynamic game, and this leads to the authors to in-
troduce the new solution concept (the intertemporal core), which
insures stability against such deviations. As it will be made clear
in the sequel, we also account for deviations when computing the
values of the characteristic function, and devise a node-consistent
payment scheme to deter such deviations. We postpone the dis-
cussion of the two related papers by Chander and Tulkens (1997)
and Germain et al. (2003) after setting our model and results, as it
will be thenmuch easier to contrast their contributions to this one.

Predtetchinski (2007)2 considered a class of discrete-time
stochastic dynamic games where one non-transferable utility
game (NTU-game) from a finite set can be realized in each time
period. The transition from a state to another is described by a
Markov process. The author introduces the solution of strong se-
quential core for stationary cooperative games, i.e., defines the set
of utilities that are robust to deviation by any coalitions, and pro-
vide conditions for non-emptiness of this core. At least two main
differences can be pointed out with the present paper. First, in
Predtetchinski (2007) the values of the characteristic functions are
given, whereas here they are obtained as Nash equilibrium out-
comes. Second, as he is analyzing NTU-games, there is no issue of
determining transfers to maintain time consistency. Our focus is
precisely defining a decomposition over time of imputations (or
transfers) from the core to obtain the node-consistent core for the
whole game.

Xu and Veinott (2013) are also interested by time-consistency
of the core in a setting where the players’ profits depend on a
(same) random variable. Here, cooperation means that players can
share resources and information about this random variable. The
value of the characteristic function for a coalition is given by the
supremum of its conditional expected total payoff. Their stochas-
tic process is similar to ours, that is, the realization of the random
variable does not dependonplayers’ actions and all players face the

2 See also Predtetchinski, Herings, and Perea (2006); Predtetchinski, Herings, and
Peters (2002).

same randomness. However, and very importantly, non-coalition
members do not influence the coalition’s payoff, which means, us-
ing economic jargon, that they are dealing with games with no
externalities. This greatly simplifies the computation of the char-
acteristic function values, which are then given by the solution of
optimization problems. In our case, the value of a coalition devi-
ating from the grand coalition is given by solving an equilibrium
problem, meaning that non-coalition members have a say in what
this coalition can achieve alone. Xu and Veinott determine the se-
quential stochastic core elements by calculating a saddle point of
a specific Lagrangian.

Finally, we wish to point out one additional non-trivial differ-
ence with the papers discussed above, namely, themodeling of the
dynamics of the game. Typically in the above discussed papers, the
dynamics are related to payoffs in the stage game (which can also
be history dependent), and the focus is on the derivation of con-
ditions guaranteeing non-emptiness of the core. Here, we use a
control-theoretic formalism, that is, we distinguish between flow
(control) and (stock) state variables, with the evolution of the latter
being dependent on players’ decisions, and not on outcomes. This
implies that each subgame starts in a position that summarizes the
history of past decisions and the stochastic process. As shown in
the empirical applications (see the above cited references in energy
markets), we believe that our formalism, i.e., stochastic multistage
games, has an interesting and natural practical appeal in applica-
tions in, e.g., economics, engineering and management science.

The rest of the paper is organized as follows: Section 2 recalls
themain ingredients of the class of games of interest, and Section 3
deals with the node consistency of the core. We provide an
illustrative example in Section 4, and briefly conclude in Section 5.

2. Game over event tree

We recall in this section the main ingredients of the class of
discrete-time dynamic games player over an event tree (see Hau-
rie et al., 2012 for more details). Let T = {0, 1, . . . , T } be the set
of periods. The exogenous stochastic process is represented by an
event tree, which has a root node n0 in period 0 and a set of nodes
N t

=

nt
1, . . . , n

t
Nt


in period t = 1, . . . , T . Each node nt

l ∈ N t

represents a possible sample value of the history of the stochastic
process up to time t . The tree graph structure represents the nest-
ing of information as one time period succeeds the other. Denote
by a(nt

l ) ∈ N t−1 the unique predecessor of node nt
l ∈ N t on the

event-tree graph for t = 1, . . . , T , and by S(nt
l ) ⊂ N t+1 the set of

all possible direct successors of node nt
l ∈ N t for t = 0, . . . , T −1.

A path from the root node n0 to a terminal node nT
l is called a sce-

nario. Each scenario has a probability and the probabilities of all
scenarios sum up to 1. We denote by π(nt

l ) the probability of pass-
ing through node nt

l , which corresponds to the sumof the probabil-
ities of all scenarios that contain this node. In particular,π(n0) = 1
andπ(nT

l ) is equal to the probability of the single scenario that ter-
minates in (leaf) node nT

l .
Denote by M = {1, . . . ,m} the set of players. For each player

j ∈ M , we define a set of decision variables indexed over the set of
nodes. Denote by uj(nt

l ) ∈ Rmj the decision variables of player j at
node nt

l , and let u(nt
l ) =


u1(nt

l ), . . . , um(nt
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. Let X ⊂ Rp, with p

a given positive integer, be a state set. For each node nt
l ∈ N t , t =

0, 1, . . . , T , letU
ntl
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ntl
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ntl
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control set of player j. Denote by Untl = U
ntl
1 ×· · ·×U

ntl
j ×· · ·×U

ntl
m

the product control sets. A transition function f n
t
l (·, ·) : X ×Untl →

X is associated with each node nt
l . The state equations are given by
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∈ Ua(ntl ), nt

l ∈ N t , t = 1, . . . , T . (2)
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