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a b s t r a c t

This paper is concerned with the stability and input–output gain analysis of linear delay systems with
cone invariance. Based on the partial ordering over a cone, the monotonicity of the trajectory of the cone-
preserving systemswith constant delays is first studied. Then, by comparing the trajectory of the constant
delay systems and that of time-varying delay systems, we prove that a cone-preserving system with
interval time-varying delays is asymptotically stable if and only if the corresponding delay-free system
is asymptotically stable. This implies that the stability of a cone-preserving system is insensitive to the
magnitude of the delays. Moreover, based on the cone-induced norms, an explicit characterization on
the cone-induced gain of an input–output cone-preserving system is given in terms of system matrices.
Finally, numerical examples are provided to illustrate the theoretical results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Internally positive systems, whose state and output are con-
strained in the nonnegative orthant whenever the initial condition
and input are nonnegative, have drawn tremendous attention in
the past decade. This is partly due to their broad applications in sys-
tems biology (de Jong, 2002), ecology and power control of wire-
less networks (Zappavigna, Charalambous, & Knorn, 2012) and so
on. Both behavioral analysis and synthesis of positive dynamic sys-
tems are available in the literature, and one can refer to Ait Rami
(2011), Ait Rami and Tadeo (2007), Colaneri, Middleton, Chen, Ca-
porale, and Blanchini (2014), Kaczorek (2002, 2011), Li, Lam, and
Shu (2010) Li, Lam, Wang, and Date (2011), Liu and Dang (2011),
Wang and Huang (2013), Zhao, Liu, Yin, and Li (2014), Zhao, Zhang,
Shi, and Liu (2012) and the references therein. As a natural gener-
alization of internally positive systems, we consider a special class
of systemswith a proper cone being an invariant set. Such systems,
also referred to as cone-preserving systems and monotone control
systems (Angeli & Sontag, 2003), have applications in rendezvous
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of multi-agent systems. The rendezvous problem (Bhattacharya,
Tiwari, Fung, & Murray, 2009; Tiwari, Fung, Bhattacharya, & Mur-
ray, 2004) ofmultiple agents (for instance, can be vehicles, sensors)
subject to communication delays can be formulated as a linear de-
lay system with cone invariance (with some restrictions that the
initial conditions must be given in an appropriately defined poly-
hedral cone). A complete characterization on the polyhedra invari-
ance of a continuous-time linear system is given in Castelan and
Hennet (1993). In this paper, instead of studying dynamic systems
leaving a specific cone invariant, we focus on the asymptotic stabil-
ity and input–output gain analysis for a linear delay system which
is invariant on a general proper cone.

For linear systems under nonnegativity constraint, many delay
related robust properties have been reported. For instance, it was
pointed out in Haddad and Chellaboina (2004) that a positive
system with constant delays is asymptotically stable if and only
if the sum of all the system parameter matrices is Hurwitz. In Liu,
Yu, and Wang (2010) and Ngoc (2013), it was reported that both
asymptotic stability and exponential stability of positive systems
with bounded time-varying delays can be achieved nomatter how
large the delays are. Recently, for cone-preserving systems with
constant delays, it was proved in Tanaka, Langbort, andUgrinovskii
(2013) that the magnitude of the delays does not affect their
asymptotic stability by using the fact that the spectral radius of
the cone-preserving transfer function along the imaginary axis
attains its maximum at frequency zero. For the input–output gain
analysis, both L1 and L∞ gains are often employed as performance
measures for positive systems (Briat, 2013; Chen, Lam, Li, &
Shu, 2013). A delay-independent characterization of the weighted

http://dx.doi.org/10.1016/j.automatica.2014.12.014
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2014.12.014
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.12.014&domain=pdf
mailto:junshen2009@gmail.com
mailto:w.zheng@uws.edu.au
http://dx.doi.org/10.1016/j.automatica.2014.12.014


J. Shen, W.X. Zheng / Automatica 53 (2015) 30–36 31

L1-gain for positive systems with constant delays was presented
in Haddad, Chellaboina, and Rajpurohit (2004). In Briat (2013),
the characterization of the L∞-gain of a positive system was
derived from the L1-gain computation of its dual system. Different
from Briat (2013), we emphasize that the ∞-norm can also be
regarded as a norm induced by the partial ordering defined with
respect to the nonnegative orthant. This viewpoint enables us to
establish explicit characterizations on the cone-induced gains for
input–output cone-preserving systems.

The delay robustness in positive systems naturally gives rise
to a question: is this delay-independent property due to the cone
invariance of the system rather than nonnegativity? In this paper,
we provide a positive answer to this question, that is, we aim at
proving that the asymptotic stability of a cone-preserving system
with bounded time-varying delays is insensitive to the magnitude
of the delays. By studying the partial ordering of the set of state
trajectories, the monotonicity of state trajectories with respect to
a given cone is analyzed. Along this line, based on the cone-induced
norms, we further explicitly characterize the cone-induced gain of
cone-preserving systems in terms of system matrices. Note that
the linear co-positive Lyapunov–Krasovskii functional method in
Haddad and Chellaboina (2004) is based on the L1-norm, which
is not suitable for analyzing systems defined on a general proper
cone. In this connection, we will adopt cone-induced norms in this
paper,which facilitates the analysis of state trajectories over cones.
This viewpoint serves as a basis for both stability and input–output
gain analysis. It is worth mentioning that the techniques utilized
in Liu et al. (2010) have to resort to the explicit solutions of the
system and thus they are not easily applicable for the stability
analysis of cone-invariant systems. The stability analysis of cone-
preserving systems with constant delays in Tanaka et al. (2013)
was performed from an input–output viewpoint and relies on the
transfer function of a linear time-invariant system, therefore it is
no longer valid when time-varying delays are encountered.

The main technical novelty and significance of the work in
this paper lie in that the developed approach is based on the
monotonicity of the state trajectory of the constant delay system
(with special initial conditions) and its comparison with the time-
varying delay system, instead of relying on explicit expressions of
the state trajectory. Therefore, this method is much straightfor-
ward for the analysis of cone-preserving systems. The general idea
of our proof is based on the comparison principle. More specifi-
cally, our proof can be divided into the following steps. We first
prove that for a constant delay system with cone invariance under
a special initial condition (which is selected based on Lemma 3),
its state trajectory is monotonic with respect to the partial order
induced by the cone. This also ensures the attractivity of the con-
stant delay system. Then, the time-varying delay system is ana-
lyzed by comparison with the constant delay system. This paper
can be viewed as important extensions of some recent works con-
cerning the stability analysis of positive delay systems (Liu et al.,
2010; Ngoc, 2013) as well as L∞-gain analysis for positive systems
(Briat, 2013). The results of this paper may also have potential ap-
plications in the analysis of positive descriptor system (Ait Rami &
Napp, 2012, 2014) since the admissible initial conditions of a pos-
itive descriptor system can be represented by a conic set.

2. Preliminaries

In this section, some basic notations and lemmas in book
Berman and Plemmons (1994) will be recalled. Rn and Rn

+
denote

the set of all real vectors and all vectors with nonnegative entries,
respectively. 1n denotes an n-dimensional vector with each entry
equal to 1. The set of all vector-valued continuous functions
defined on [−τ , 0] is denoted by C([−τ , 0], Rn). The boundary of
a set S and its interior are denoted by ∂S and int S, respectively.

Given a set S, SG denotes the set consisting of all finite nonnegative
linear combinations of the elements of S. S∗, the dual of S, is defined
by S∗

= {z ∈ Rn
: (z, y) ≥ 0 for all y ∈ S}, where (·, ·) stands for

the inner product. For a set S ⊆ Rn and a matrix A ∈ Rm×n, by
AS we mean that AS = {Ax : x ∈ S}. A set is defined to be a cone
if K = KG. A convex cone is pointed if K ∩ (−K) = {0} and is
solid if int K ≠ ∅. A closed, pointed, solid convex cone K is called
a proper cone. Throughout this paper, we always assume that the
given cone is proper. A proper cone K induces a partial ordering in
Rn via y≼K x if and only if x − y ∈ K .

Given a proper cone K ⊂ Rn, a matrix A ∈ Rm×n is called
K -nonnegative if AK ⊆ K and is called K -positive if A(K\{0}) ⊆

int K . A square matrix A is called cross-positive on K if for all
y ∈ K , z ∈ K ∗ such that (z, y) = 0, we have (z, Ay) ≥ 0.
Note that the sum of a cross-positive matrix and a K -nonnegative
matrix is still cross-positive on K . A square matrix is called Met-
zler if all its off-diagonal entries are nonnegative. For any matrix
A ∈ Rn×n, µ(A) = max{Reλ : λ ∈ σ(A)} denotes the spectral
abscissa of A, where σ(A) is the spectrum of A.

The next lemmadirectly follows fromSchneider andVidyasagar
(1970, Lemma 6 and Theorem 2).

Lemma 1 (Schneider & Vidyasagar, 1970). Let K ⊂ Rn be a proper
cone and let A be cross-positive on K . Then there exist a sequence of
matrices Ai and a sequence of real numbers αi ≥ 0 satisfying that
(Ai + αiI)(K\{0}) ⊆ int K and limi→∞ Ai = A.

In the following we introduce the cone-induced vector norm and
the cone-inducedmatrix norm,whichwill be needed in the sequel.

Definition 1 (Berman & Plemmons, 1994, pp. 5–6). Let K ⊂ Rn be a
proper cone and let v ∈ int K . Then an order interval Bv is defined
as Bv = {x ∈ Rn

: −v ≼K x≼K v}. The set Bv defines a norm on Rn:

∥x∥v = inf{t ≥ 0 : x ∈ tBv}.

Note that the cone-induced vector norm ismonotonic with respect
to cone K , that is, 0≼K x≼K y implies that ∥x∥v ≤ ∥y∥v . The cone-
induced matrix norm of a square matrix A is defined as ∥A∥v =

sup∥x∥v=1 ∥Ax∥v and it satisfies that ∥A∥v = ∥Av∥v provided that A
is K -nonnegative.

3. Stability analysis

In this section, we shall point out a consequence of the cone
invariance, that is, the asymptotic stability is robust against
bounded time-varying delays. In what follows, we first give a
characterization on the cone invariance of continuous-time linear
systems.

Lemma 2. Given proper cones Kx ⊂ Rn and Ku ∈ Rm, suppose that
A is cross-positive on Kx, Ad is Kx-nonnegative and BKu ⊆ Kx. Then,
for any initial condition x(s) = φ(s) ∈ Kx (s ∈ [−d, 0]), any input
u(t) ∈ Ku (t ≥ 0) and any delays d(t) satisfying 0 ≤ d(t) ≤ d, the
state trajectory of system

ẋ(t) = Ax(t) + Adx(t − d(t)) + Bu(t) (1)

satisfies that x(t) ∈ Kx for all t ≥ 0.

Proof. Our goal is to prove that for any given T > 0 and φ(s) ∈

int Kx (s ∈ [−d, 0]), x(t) ∈ Kx holds for all t ∈ [0, T ]. Then, by
the continuous dependence of the solution of system (1) on the
initial value, together with the fact that cone Kx is closed, one can
deduce that for any φ(s) ∈ Kx (s ∈ [−d, 0]), x(t) ∈ Kx holds for
all t ∈ [0, T ]. Note that for any cross-positive matrix A, according
to Lemma 1, one can always find a sequence of matrices Ai and a
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